Metamath Proof Explorer


Theorem selvcllem4

Description: The fourth argument passed to evalSub is in the domain (a polynomial in ( I mPoly ( J mPoly ( ( I \ J ) mPoly R ) ) ) ). (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvcllem4.p 𝑃 = ( 𝐼 mPoly 𝑅 )
selvcllem4.b 𝐵 = ( Base ‘ 𝑃 )
selvcllem4.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
selvcllem4.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvcllem4.c 𝐶 = ( algSc ‘ 𝑇 )
selvcllem4.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
selvcllem4.s 𝑆 = ( 𝑇s ran 𝐷 )
selvcllem4.w 𝑊 = ( 𝐼 mPoly 𝑆 )
selvcllem4.x 𝑋 = ( Base ‘ 𝑊 )
selvcllem4.i ( 𝜑𝐼𝑉 )
selvcllem4.r ( 𝜑𝑅 ∈ CRing )
selvcllem4.j ( 𝜑𝐽𝐼 )
selvcllem4.f ( 𝜑𝐹𝐵 )
Assertion selvcllem4 ( 𝜑 → ( 𝐷𝐹 ) ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 selvcllem4.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 selvcllem4.b 𝐵 = ( Base ‘ 𝑃 )
3 selvcllem4.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
4 selvcllem4.t 𝑇 = ( 𝐽 mPoly 𝑈 )
5 selvcllem4.c 𝐶 = ( algSc ‘ 𝑇 )
6 selvcllem4.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
7 selvcllem4.s 𝑆 = ( 𝑇s ran 𝐷 )
8 selvcllem4.w 𝑊 = ( 𝐼 mPoly 𝑆 )
9 selvcllem4.x 𝑋 = ( Base ‘ 𝑊 )
10 selvcllem4.i ( 𝜑𝐼𝑉 )
11 selvcllem4.r ( 𝜑𝑅 ∈ CRing )
12 selvcllem4.j ( 𝜑𝐽𝐼 )
13 selvcllem4.f ( 𝜑𝐹𝐵 )
14 10 difexd ( 𝜑 → ( 𝐼𝐽 ) ∈ V )
15 10 12 ssexd ( 𝜑𝐽 ∈ V )
16 3 4 5 6 14 15 11 selvcllem2 ( 𝜑𝐷 ∈ ( 𝑅 RingHom 𝑇 ) )
17 3 4 5 6 14 15 11 selvcllem3 ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) )
18 ssidd ( 𝜑 → ran 𝐷 ⊆ ran 𝐷 )
19 7 resrhm2b ( ( ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐷 ⊆ ran 𝐷 ) → ( 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) ↔ 𝐷 ∈ ( 𝑅 RingHom 𝑆 ) ) )
20 17 18 19 syl2anc ( 𝜑 → ( 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) ↔ 𝐷 ∈ ( 𝑅 RingHom 𝑆 ) ) )
21 16 20 mpbid ( 𝜑𝐷 ∈ ( 𝑅 RingHom 𝑆 ) )
22 rhmghm ( 𝐷 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐷 ∈ ( 𝑅 GrpHom 𝑆 ) )
23 ghmmhm ( 𝐷 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐷 ∈ ( 𝑅 MndHom 𝑆 ) )
24 21 22 23 3syl ( 𝜑𝐷 ∈ ( 𝑅 MndHom 𝑆 ) )
25 1 8 2 9 10 24 13 mhmcompl ( 𝜑 → ( 𝐷𝐹 ) ∈ 𝑋 )