Step |
Hyp |
Ref |
Expression |
1 |
|
selvcllem4.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
selvcllem4.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
selvcllem4.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
4 |
|
selvcllem4.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
5 |
|
selvcllem4.c |
⊢ 𝐶 = ( algSc ‘ 𝑇 ) |
6 |
|
selvcllem4.d |
⊢ 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) |
7 |
|
selvcllem4.s |
⊢ 𝑆 = ( 𝑇 ↾s ran 𝐷 ) |
8 |
|
selvcllem4.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑆 ) |
9 |
|
selvcllem4.x |
⊢ 𝑋 = ( Base ‘ 𝑊 ) |
10 |
|
selvcllem4.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
11 |
|
selvcllem4.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
12 |
|
selvcllem4.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
13 |
|
selvcllem4.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
14 |
10
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
15 |
10 12
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
16 |
3 4 5 6 14 15 11
|
selvcllem2 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) ) |
17 |
3 4 5 6 14 15 11
|
selvcllem3 |
⊢ ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) ) |
18 |
|
ssidd |
⊢ ( 𝜑 → ran 𝐷 ⊆ ran 𝐷 ) |
19 |
7
|
resrhm2b |
⊢ ( ( ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐷 ⊆ ran 𝐷 ) → ( 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) ↔ 𝐷 ∈ ( 𝑅 RingHom 𝑆 ) ) ) |
20 |
17 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) ↔ 𝐷 ∈ ( 𝑅 RingHom 𝑆 ) ) ) |
21 |
16 20
|
mpbid |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑅 RingHom 𝑆 ) ) |
22 |
|
rhmghm |
⊢ ( 𝐷 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐷 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
23 |
|
ghmmhm |
⊢ ( 𝐷 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐷 ∈ ( 𝑅 MndHom 𝑆 ) ) |
24 |
21 22 23
|
3syl |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑅 MndHom 𝑆 ) ) |
25 |
1 8 2 9 10 24 13
|
mhmcompl |
⊢ ( 𝜑 → ( 𝐷 ∘ 𝐹 ) ∈ 𝑋 ) |