| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selvcllem5.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
| 2 |
|
selvcllem5.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
| 3 |
|
selvcllem5.c |
⊢ 𝐶 = ( algSc ‘ 𝑇 ) |
| 4 |
|
selvcllem5.e |
⊢ 𝐸 = ( Base ‘ 𝑇 ) |
| 5 |
|
selvcllem5.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) |
| 6 |
|
selvcllem5.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 7 |
|
selvcllem5.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 8 |
|
selvcllem5.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 9 |
4
|
fvexi |
⊢ 𝐸 ∈ V |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
| 11 |
|
eqid |
⊢ ( 𝐽 mVar 𝑈 ) = ( 𝐽 mVar 𝑈 ) |
| 12 |
6 8
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝐽 ∈ V ) |
| 14 |
6
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
| 15 |
7
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 16 |
1 14 15
|
mplringd |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑈 ∈ Ring ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) |
| 19 |
2 11 4 13 17 18
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) ∈ 𝐸 ) |
| 20 |
19
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) ∈ 𝐸 ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 22 |
2 4 21 3 12 16
|
mplasclf |
⊢ ( 𝜑 → 𝐶 : ( Base ‘ 𝑈 ) ⟶ 𝐸 ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → 𝐶 : ( Base ‘ 𝑈 ) ⟶ 𝐸 ) |
| 24 |
|
eqid |
⊢ ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) = ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) |
| 25 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
| 26 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → 𝑅 ∈ Ring ) |
| 27 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ↔ ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽 ) ) |
| 28 |
27
|
biimpri |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) |
| 29 |
28
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) |
| 30 |
1 24 21 25 26 29
|
mvrcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑈 ) ) |
| 31 |
23 30
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ∈ 𝐸 ) |
| 32 |
20 31
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ∈ 𝐸 ) |
| 33 |
32 5
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐸 ) |
| 34 |
10 6 33
|
elmapdd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐸 ↑m 𝐼 ) ) |