| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selvcllem5.u |
|- U = ( ( I \ J ) mPoly R ) |
| 2 |
|
selvcllem5.t |
|- T = ( J mPoly U ) |
| 3 |
|
selvcllem5.c |
|- C = ( algSc ` T ) |
| 4 |
|
selvcllem5.e |
|- E = ( Base ` T ) |
| 5 |
|
selvcllem5.f |
|- F = ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) |
| 6 |
|
selvcllem5.i |
|- ( ph -> I e. V ) |
| 7 |
|
selvcllem5.r |
|- ( ph -> R e. CRing ) |
| 8 |
|
selvcllem5.j |
|- ( ph -> J C_ I ) |
| 9 |
4
|
fvexi |
|- E e. _V |
| 10 |
9
|
a1i |
|- ( ph -> E e. _V ) |
| 11 |
|
eqid |
|- ( J mVar U ) = ( J mVar U ) |
| 12 |
6 8
|
ssexd |
|- ( ph -> J e. _V ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ x e. J ) -> J e. _V ) |
| 14 |
6
|
difexd |
|- ( ph -> ( I \ J ) e. _V ) |
| 15 |
7
|
crngringd |
|- ( ph -> R e. Ring ) |
| 16 |
1 14 15
|
mplringd |
|- ( ph -> U e. Ring ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ x e. J ) -> U e. Ring ) |
| 18 |
|
simpr |
|- ( ( ph /\ x e. J ) -> x e. J ) |
| 19 |
2 11 4 13 17 18
|
mvrcl |
|- ( ( ph /\ x e. J ) -> ( ( J mVar U ) ` x ) e. E ) |
| 20 |
19
|
adantlr |
|- ( ( ( ph /\ x e. I ) /\ x e. J ) -> ( ( J mVar U ) ` x ) e. E ) |
| 21 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 22 |
2 4 21 3 12 16
|
mplasclf |
|- ( ph -> C : ( Base ` U ) --> E ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> C : ( Base ` U ) --> E ) |
| 24 |
|
eqid |
|- ( ( I \ J ) mVar R ) = ( ( I \ J ) mVar R ) |
| 25 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> ( I \ J ) e. _V ) |
| 26 |
15
|
ad2antrr |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> R e. Ring ) |
| 27 |
|
eldif |
|- ( x e. ( I \ J ) <-> ( x e. I /\ -. x e. J ) ) |
| 28 |
27
|
biimpri |
|- ( ( x e. I /\ -. x e. J ) -> x e. ( I \ J ) ) |
| 29 |
28
|
adantll |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> x e. ( I \ J ) ) |
| 30 |
1 24 21 25 26 29
|
mvrcl |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> ( ( ( I \ J ) mVar R ) ` x ) e. ( Base ` U ) ) |
| 31 |
23 30
|
ffvelcdmd |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) e. E ) |
| 32 |
20 31
|
ifclda |
|- ( ( ph /\ x e. I ) -> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) e. E ) |
| 33 |
32 5
|
fmptd |
|- ( ph -> F : I --> E ) |
| 34 |
10 6 33
|
elmapdd |
|- ( ph -> F e. ( E ^m I ) ) |