Step |
Hyp |
Ref |
Expression |
1 |
|
selvcl.p |
|- P = ( I mPoly R ) |
2 |
|
selvcl.b |
|- B = ( Base ` P ) |
3 |
|
selvcl.u |
|- U = ( ( I \ J ) mPoly R ) |
4 |
|
selvcl.t |
|- T = ( J mPoly U ) |
5 |
|
selvcl.e |
|- E = ( Base ` T ) |
6 |
|
selvcl.i |
|- ( ph -> I e. V ) |
7 |
|
selvcl.r |
|- ( ph -> R e. CRing ) |
8 |
|
selvcl.j |
|- ( ph -> J C_ I ) |
9 |
|
selvcl.f |
|- ( ph -> F e. B ) |
10 |
|
eqid |
|- ( algSc ` T ) = ( algSc ` T ) |
11 |
|
eqid |
|- ( ( algSc ` T ) o. ( algSc ` U ) ) = ( ( algSc ` T ) o. ( algSc ` U ) ) |
12 |
1 2 3 4 10 11 6 7 8 9
|
selvval |
|- ( ph -> ( ( ( I selectVars R ) ` J ) ` F ) = ( ( ( ( I evalSub T ) ` ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ` ( ( ( algSc ` T ) o. ( algSc ` U ) ) o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( ( algSc ` T ) ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
13 |
|
eqid |
|- ( T ^s ( E ^m I ) ) = ( T ^s ( E ^m I ) ) |
14 |
|
eqid |
|- ( Base ` ( T ^s ( E ^m I ) ) ) = ( Base ` ( T ^s ( E ^m I ) ) ) |
15 |
6 8
|
ssexd |
|- ( ph -> J e. _V ) |
16 |
6
|
difexd |
|- ( ph -> ( I \ J ) e. _V ) |
17 |
3
|
mplcrng |
|- ( ( ( I \ J ) e. _V /\ R e. CRing ) -> U e. CRing ) |
18 |
16 7 17
|
syl2anc |
|- ( ph -> U e. CRing ) |
19 |
4
|
mplcrng |
|- ( ( J e. _V /\ U e. CRing ) -> T e. CRing ) |
20 |
15 18 19
|
syl2anc |
|- ( ph -> T e. CRing ) |
21 |
|
ovexd |
|- ( ph -> ( E ^m I ) e. _V ) |
22 |
|
eqid |
|- ( ( I evalSub T ) ` ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) = ( ( I evalSub T ) ` ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) |
23 |
|
eqid |
|- ( I mPoly ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ) = ( I mPoly ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ) |
24 |
|
eqid |
|- ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) = ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) |
25 |
3 4 10 11 22 23 24 13 5 6 7 8
|
selvval2lemn |
|- ( ph -> ( ( I evalSub T ) ` ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) e. ( ( I mPoly ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ) RingHom ( T ^s ( E ^m I ) ) ) ) |
26 |
|
eqid |
|- ( Base ` ( I mPoly ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ) ) = ( Base ` ( I mPoly ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ) ) |
27 |
26 14
|
rhmf |
|- ( ( ( I evalSub T ) ` ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) e. ( ( I mPoly ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ) RingHom ( T ^s ( E ^m I ) ) ) -> ( ( I evalSub T ) ` ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) : ( Base ` ( I mPoly ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ) ) --> ( Base ` ( T ^s ( E ^m I ) ) ) ) |
28 |
25 27
|
syl |
|- ( ph -> ( ( I evalSub T ) ` ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) : ( Base ` ( I mPoly ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ) ) --> ( Base ` ( T ^s ( E ^m I ) ) ) ) |
29 |
1 2 3 4 10 11 24 23 26 6 7 8 9
|
selvval2lem4 |
|- ( ph -> ( ( ( algSc ` T ) o. ( algSc ` U ) ) o. F ) e. ( Base ` ( I mPoly ( T |`s ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ) ) ) |
30 |
28 29
|
ffvelrnd |
|- ( ph -> ( ( ( I evalSub T ) ` ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ` ( ( ( algSc ` T ) o. ( algSc ` U ) ) o. F ) ) e. ( Base ` ( T ^s ( E ^m I ) ) ) ) |
31 |
13 5 14 20 21 30
|
pwselbas |
|- ( ph -> ( ( ( I evalSub T ) ` ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ` ( ( ( algSc ` T ) o. ( algSc ` U ) ) o. F ) ) : ( E ^m I ) --> E ) |
32 |
|
eqid |
|- ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( ( algSc ` T ) ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) = ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( ( algSc ` T ) ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) |
33 |
3 4 10 5 32 6 7 8
|
selvval2lem5 |
|- ( ph -> ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( ( algSc ` T ) ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) e. ( E ^m I ) ) |
34 |
31 33
|
ffvelrnd |
|- ( ph -> ( ( ( ( I evalSub T ) ` ran ( ( algSc ` T ) o. ( algSc ` U ) ) ) ` ( ( ( algSc ` T ) o. ( algSc ` U ) ) o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( ( algSc ` T ) ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) e. E ) |
35 |
12 34
|
eqeltrd |
|- ( ph -> ( ( ( I selectVars R ) ` J ) ` F ) e. E ) |