| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selvval2.p |
|- P = ( I mPoly R ) |
| 2 |
|
selvval2.b |
|- B = ( Base ` P ) |
| 3 |
|
selvval2.u |
|- U = ( ( I \ J ) mPoly R ) |
| 4 |
|
selvval2.t |
|- T = ( J mPoly U ) |
| 5 |
|
selvval2.c |
|- C = ( algSc ` T ) |
| 6 |
|
selvval2.d |
|- D = ( C o. ( algSc ` U ) ) |
| 7 |
|
selvval2.r |
|- ( ph -> R e. CRing ) |
| 8 |
|
selvval2.j |
|- ( ph -> J C_ I ) |
| 9 |
|
selvval2.f |
|- ( ph -> F e. B ) |
| 10 |
1 2 3 4 5 6 8 9
|
selvval |
|- ( ph -> ( ( ( I selectVars R ) ` J ) ` F ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
| 11 |
|
eqid |
|- ( ( I evalSub T ) ` ran D ) = ( ( I evalSub T ) ` ran D ) |
| 12 |
|
eqid |
|- ( I eval T ) = ( I eval T ) |
| 13 |
|
eqid |
|- ( I mPoly ( T |`s ran D ) ) = ( I mPoly ( T |`s ran D ) ) |
| 14 |
|
eqid |
|- ( T |`s ran D ) = ( T |`s ran D ) |
| 15 |
|
eqid |
|- ( Base ` ( I mPoly ( T |`s ran D ) ) ) = ( Base ` ( I mPoly ( T |`s ran D ) ) ) |
| 16 |
1 2
|
mplrcl |
|- ( F e. B -> I e. _V ) |
| 17 |
9 16
|
syl |
|- ( ph -> I e. _V ) |
| 18 |
17 8
|
ssexd |
|- ( ph -> J e. _V ) |
| 19 |
17
|
difexd |
|- ( ph -> ( I \ J ) e. _V ) |
| 20 |
3 19 7
|
mplcrngd |
|- ( ph -> U e. CRing ) |
| 21 |
4 18 20
|
mplcrngd |
|- ( ph -> T e. CRing ) |
| 22 |
3 4 5 6 19 18 7
|
selvcllem3 |
|- ( ph -> ran D e. ( SubRing ` T ) ) |
| 23 |
1 2 3 4 5 6 14 13 15 7 8 9
|
selvcllem4 |
|- ( ph -> ( D o. F ) e. ( Base ` ( I mPoly ( T |`s ran D ) ) ) ) |
| 24 |
11 12 13 14 15 17 21 22 23
|
evlsevl |
|- ( ph -> ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) = ( ( I eval T ) ` ( D o. F ) ) ) |
| 25 |
24
|
fveq1d |
|- ( ph -> ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( I eval T ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
| 26 |
10 25
|
eqtrd |
|- ( ph -> ( ( ( I selectVars R ) ` J ) ` F ) = ( ( ( I eval T ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |