Step |
Hyp |
Ref |
Expression |
1 |
|
selvval2.p |
|- P = ( I mPoly R ) |
2 |
|
selvval2.b |
|- B = ( Base ` P ) |
3 |
|
selvval2.u |
|- U = ( ( I \ J ) mPoly R ) |
4 |
|
selvval2.t |
|- T = ( J mPoly U ) |
5 |
|
selvval2.c |
|- C = ( algSc ` T ) |
6 |
|
selvval2.d |
|- D = ( C o. ( algSc ` U ) ) |
7 |
|
selvval2.i |
|- ( ph -> I e. V ) |
8 |
|
selvval2.r |
|- ( ph -> R e. CRing ) |
9 |
|
selvval2.j |
|- ( ph -> J C_ I ) |
10 |
|
selvval2.f |
|- ( ph -> F e. B ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
selvval |
|- ( ph -> ( ( ( I selectVars R ) ` J ) ` F ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
12 |
|
eqid |
|- ( ( I evalSub T ) ` ran D ) = ( ( I evalSub T ) ` ran D ) |
13 |
|
eqid |
|- ( I eval T ) = ( I eval T ) |
14 |
|
eqid |
|- ( I mPoly ( T |`s ran D ) ) = ( I mPoly ( T |`s ran D ) ) |
15 |
|
eqid |
|- ( T |`s ran D ) = ( T |`s ran D ) |
16 |
|
eqid |
|- ( Base ` ( I mPoly ( T |`s ran D ) ) ) = ( Base ` ( I mPoly ( T |`s ran D ) ) ) |
17 |
7 9
|
ssexd |
|- ( ph -> J e. _V ) |
18 |
7
|
difexd |
|- ( ph -> ( I \ J ) e. _V ) |
19 |
3 18 8
|
mplcrngd |
|- ( ph -> U e. CRing ) |
20 |
4 17 19
|
mplcrngd |
|- ( ph -> T e. CRing ) |
21 |
3 4 5 6 18 17 8
|
selvcllem3 |
|- ( ph -> ran D e. ( SubRing ` T ) ) |
22 |
1 2 3 4 5 6 15 14 16 7 8 9 10
|
selvcllem4 |
|- ( ph -> ( D o. F ) e. ( Base ` ( I mPoly ( T |`s ran D ) ) ) ) |
23 |
12 13 14 15 16 7 20 21 22
|
evlsevl |
|- ( ph -> ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) = ( ( I eval T ) ` ( D o. F ) ) ) |
24 |
23
|
fveq1d |
|- ( ph -> ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( I eval T ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
25 |
11 24
|
eqtrd |
|- ( ph -> ( ( ( I selectVars R ) ` J ) ` F ) = ( ( ( I eval T ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |