Metamath Proof Explorer


Theorem selvval2

Description: Value of the "variable selection" function. Convert selvval into a simpler form by using evlsevl . (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses selvval2.p 𝑃 = ( 𝐼 mPoly 𝑅 )
selvval2.b 𝐵 = ( Base ‘ 𝑃 )
selvval2.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
selvval2.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvval2.c 𝐶 = ( algSc ‘ 𝑇 )
selvval2.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
selvval2.i ( 𝜑𝐼𝑉 )
selvval2.r ( 𝜑𝑅 ∈ CRing )
selvval2.j ( 𝜑𝐽𝐼 )
selvval2.f ( 𝜑𝐹𝐵 )
Assertion selvval2 ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( 𝐷𝐹 ) ) ‘ ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 selvval2.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 selvval2.b 𝐵 = ( Base ‘ 𝑃 )
3 selvval2.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
4 selvval2.t 𝑇 = ( 𝐽 mPoly 𝑈 )
5 selvval2.c 𝐶 = ( algSc ‘ 𝑇 )
6 selvval2.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
7 selvval2.i ( 𝜑𝐼𝑉 )
8 selvval2.r ( 𝜑𝑅 ∈ CRing )
9 selvval2.j ( 𝜑𝐽𝐼 )
10 selvval2.f ( 𝜑𝐹𝐵 )
11 1 2 3 4 5 6 7 8 9 10 selvval ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷𝐹 ) ) ‘ ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) )
12 eqid ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) = ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 )
13 eqid ( 𝐼 eval 𝑇 ) = ( 𝐼 eval 𝑇 )
14 eqid ( 𝐼 mPoly ( 𝑇s ran 𝐷 ) ) = ( 𝐼 mPoly ( 𝑇s ran 𝐷 ) )
15 eqid ( 𝑇s ran 𝐷 ) = ( 𝑇s ran 𝐷 )
16 eqid ( Base ‘ ( 𝐼 mPoly ( 𝑇s ran 𝐷 ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑇s ran 𝐷 ) ) )
17 7 9 ssexd ( 𝜑𝐽 ∈ V )
18 7 difexd ( 𝜑 → ( 𝐼𝐽 ) ∈ V )
19 3 18 8 mplcrngd ( 𝜑𝑈 ∈ CRing )
20 4 17 19 mplcrngd ( 𝜑𝑇 ∈ CRing )
21 3 4 5 6 18 17 8 selvcllem3 ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) )
22 1 2 3 4 5 6 15 14 16 7 8 9 10 selvcllem4 ( 𝜑 → ( 𝐷𝐹 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑇s ran 𝐷 ) ) ) )
23 12 13 14 15 16 7 20 21 22 evlsevl ( 𝜑 → ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷𝐹 ) ) = ( ( 𝐼 eval 𝑇 ) ‘ ( 𝐷𝐹 ) ) )
24 23 fveq1d ( 𝜑 → ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷𝐹 ) ) ‘ ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( 𝐷𝐹 ) ) ‘ ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) )
25 11 24 eqtrd ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( 𝐷𝐹 ) ) ‘ ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) )