Step |
Hyp |
Ref |
Expression |
1 |
|
selvval2.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
selvval2.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
selvval2.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
4 |
|
selvval2.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
5 |
|
selvval2.c |
⊢ 𝐶 = ( algSc ‘ 𝑇 ) |
6 |
|
selvval2.d |
⊢ 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) |
7 |
|
selvval2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
8 |
|
selvval2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
9 |
|
selvval2.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
10 |
|
selvval2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
selvval |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
12 |
|
eqid |
⊢ ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) = ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) |
13 |
|
eqid |
⊢ ( 𝐼 eval 𝑇 ) = ( 𝐼 eval 𝑇 ) |
14 |
|
eqid |
⊢ ( 𝐼 mPoly ( 𝑇 ↾s ran 𝐷 ) ) = ( 𝐼 mPoly ( 𝑇 ↾s ran 𝐷 ) ) |
15 |
|
eqid |
⊢ ( 𝑇 ↾s ran 𝐷 ) = ( 𝑇 ↾s ran 𝐷 ) |
16 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑇 ↾s ran 𝐷 ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑇 ↾s ran 𝐷 ) ) ) |
17 |
7 9
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
18 |
7
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
19 |
3 18 8
|
mplcrngd |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
20 |
4 17 19
|
mplcrngd |
⊢ ( 𝜑 → 𝑇 ∈ CRing ) |
21 |
3 4 5 6 18 17 8
|
selvcllem3 |
⊢ ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) ) |
22 |
1 2 3 4 5 6 15 14 16 7 8 9 10
|
selvcllem4 |
⊢ ( 𝜑 → ( 𝐷 ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑇 ↾s ran 𝐷 ) ) ) ) |
23 |
12 13 14 15 16 7 20 21 22
|
evlsevl |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) = ( ( 𝐼 eval 𝑇 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ) |
24 |
23
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
25 |
11 24
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |