Step |
Hyp |
Ref |
Expression |
1 |
|
selvval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
selvval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
selvval.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
4 |
|
selvval.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
5 |
|
selvval.c |
⊢ 𝐶 = ( algSc ‘ 𝑇 ) |
6 |
|
selvval.d |
⊢ 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) |
7 |
|
selvval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
8 |
|
selvval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
9 |
|
selvval.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
10 |
|
selvval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
11 |
7 8 9
|
selvfval |
⊢ ( 𝜑 → ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) = ( 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ↦ ⦋ ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) / 𝑢 ⦌ ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) ) |
12 |
|
coeq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑑 ∘ 𝑓 ) = ( 𝑑 ∘ 𝐹 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) = ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ) |
14 |
13
|
fveq1d |
⊢ ( 𝑓 = 𝐹 → ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
15 |
14
|
csbeq2dv |
⊢ ( 𝑓 = 𝐹 → ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
16 |
15
|
csbeq2dv |
⊢ ( 𝑓 = 𝐹 → ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
17 |
16
|
csbeq2dv |
⊢ ( 𝑓 = 𝐹 → ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
18 |
17
|
csbeq2dv |
⊢ ( 𝑓 = 𝐹 → ⦋ ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) / 𝑢 ⦌ ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) / 𝑢 ⦌ ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → ⦋ ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) / 𝑢 ⦌ ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) / 𝑢 ⦌ ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
20 |
1
|
fveq2i |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
21 |
2 20
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
22 |
10 21
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
23 |
|
fvex |
⊢ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∈ V |
24 |
23
|
csbex |
⊢ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∈ V |
25 |
24
|
csbex |
⊢ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∈ V |
26 |
25
|
csbex |
⊢ ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∈ V |
27 |
26
|
csbex |
⊢ ⦋ ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) / 𝑢 ⦌ ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∈ V |
28 |
27
|
a1i |
⊢ ( 𝜑 → ⦋ ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) / 𝑢 ⦌ ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∈ V ) |
29 |
11 19 22 28
|
fvmptd |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) = ⦋ ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) / 𝑢 ⦌ ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
30 |
|
ovex |
⊢ ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) ∈ V |
31 |
3
|
eqeq2i |
⊢ ( 𝑢 = 𝑈 ↔ 𝑢 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) ) |
32 |
|
oveq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝐽 mPoly 𝑢 ) = ( 𝐽 mPoly 𝑈 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( algSc ‘ 𝑢 ) = ( algSc ‘ 𝑈 ) ) |
34 |
33
|
coeq2d |
⊢ ( 𝑢 = 𝑈 → ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) = ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) ) |
35 |
|
oveq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝐽 mVar 𝑢 ) = ( 𝐽 mVar 𝑈 ) ) |
36 |
35
|
fveq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) = ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) ) |
37 |
36
|
ifeq1d |
⊢ ( 𝑢 = 𝑈 → if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) = if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) |
38 |
37
|
mpteq2dv |
⊢ ( 𝑢 = 𝑈 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) |
39 |
38
|
fveq2d |
⊢ ( 𝑢 = 𝑈 → ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
40 |
34 39
|
csbeq12dv |
⊢ ( 𝑢 = 𝑈 → ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
41 |
40
|
csbeq2dv |
⊢ ( 𝑢 = 𝑈 → ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
42 |
32 41
|
csbeq12dv |
⊢ ( 𝑢 = 𝑈 → ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝐽 mPoly 𝑈 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
43 |
|
ovex |
⊢ ( 𝐽 mPoly 𝑈 ) ∈ V |
44 |
4
|
eqeq2i |
⊢ ( 𝑡 = 𝑇 ↔ 𝑡 = ( 𝐽 mPoly 𝑈 ) ) |
45 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( algSc ‘ 𝑡 ) = ( algSc ‘ 𝑇 ) ) |
46 |
|
oveq2 |
⊢ ( 𝑡 = 𝑇 → ( 𝐼 evalSub 𝑡 ) = ( 𝐼 evalSub 𝑇 ) ) |
47 |
46
|
fveq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) = ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ) |
48 |
47
|
fveq1d |
⊢ ( 𝑡 = 𝑇 → ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) = ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ) |
49 |
48
|
fveq1d |
⊢ ( 𝑡 = 𝑇 → ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
50 |
49
|
csbeq2dv |
⊢ ( 𝑡 = 𝑇 → ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
51 |
45 50
|
csbeq12dv |
⊢ ( 𝑡 = 𝑇 → ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( algSc ‘ 𝑇 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
52 |
|
fvex |
⊢ ( algSc ‘ 𝑇 ) ∈ V |
53 |
5
|
eqeq2i |
⊢ ( 𝑐 = 𝐶 ↔ 𝑐 = ( algSc ‘ 𝑇 ) ) |
54 |
|
coeq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ) |
55 |
|
fveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) = ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) |
56 |
55
|
ifeq2d |
⊢ ( 𝑐 = 𝐶 → if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) = if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) |
57 |
56
|
mpteq2dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) |
58 |
57
|
fveq2d |
⊢ ( 𝑐 = 𝐶 → ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
59 |
54 58
|
csbeq12dv |
⊢ ( 𝑐 = 𝐶 → ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
60 |
5
|
fvexi |
⊢ 𝐶 ∈ V |
61 |
|
fvex |
⊢ ( algSc ‘ 𝑈 ) ∈ V |
62 |
60 61
|
coex |
⊢ ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ V |
63 |
6
|
eqeq2i |
⊢ ( 𝑑 = 𝐷 ↔ 𝑑 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ) |
64 |
|
rneq |
⊢ ( 𝑑 = 𝐷 → ran 𝑑 = ran 𝐷 ) |
65 |
64
|
fveq2d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) = ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ) |
66 |
|
coeq1 |
⊢ ( 𝑑 = 𝐷 → ( 𝑑 ∘ 𝐹 ) = ( 𝐷 ∘ 𝐹 ) ) |
67 |
65 66
|
fveq12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) = ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ) |
68 |
67
|
fveq1d |
⊢ ( 𝑑 = 𝐷 → ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
69 |
63 68
|
sylbir |
⊢ ( 𝑑 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) → ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
70 |
62 69
|
csbie |
⊢ ⦋ ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) |
71 |
59 70
|
eqtrdi |
⊢ ( 𝑐 = 𝐶 → ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
72 |
53 71
|
sylbir |
⊢ ( 𝑐 = ( algSc ‘ 𝑇 ) → ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
73 |
52 72
|
csbie |
⊢ ⦋ ( algSc ‘ 𝑇 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) |
74 |
51 73
|
eqtrdi |
⊢ ( 𝑡 = 𝑇 → ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
75 |
44 74
|
sylbir |
⊢ ( 𝑡 = ( 𝐽 mPoly 𝑈 ) → ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
76 |
43 75
|
csbie |
⊢ ⦋ ( 𝐽 mPoly 𝑈 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑈 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) |
77 |
42 76
|
eqtrdi |
⊢ ( 𝑢 = 𝑈 → ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
78 |
31 77
|
sylbir |
⊢ ( 𝑢 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) → ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
79 |
30 78
|
csbie |
⊢ ⦋ ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) / 𝑢 ⦌ ⦋ ( 𝐽 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝐼 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) |
80 |
29 79
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) ‘ ( 𝐷 ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |