Step |
Hyp |
Ref |
Expression |
1 |
|
selvval.p |
|
2 |
|
selvval.b |
|
3 |
|
selvval.u |
|
4 |
|
selvval.t |
|
5 |
|
selvval.c |
|
6 |
|
selvval.d |
|
7 |
|
selvval.i |
|
8 |
|
selvval.r |
|
9 |
|
selvval.j |
|
10 |
|
selvval.f |
|
11 |
7 8 9
|
selvfval |
|
12 |
|
coeq2 |
|
13 |
12
|
fveq2d |
|
14 |
13
|
fveq1d |
|
15 |
14
|
csbeq2dv |
|
16 |
15
|
csbeq2dv |
|
17 |
16
|
csbeq2dv |
|
18 |
17
|
csbeq2dv |
|
19 |
18
|
adantl |
|
20 |
1
|
fveq2i |
|
21 |
2 20
|
eqtri |
|
22 |
10 21
|
eleqtrdi |
|
23 |
|
fvex |
|
24 |
23
|
csbex |
|
25 |
24
|
csbex |
|
26 |
25
|
csbex |
|
27 |
26
|
csbex |
|
28 |
27
|
a1i |
|
29 |
11 19 22 28
|
fvmptd |
|
30 |
|
ovex |
|
31 |
3
|
eqeq2i |
|
32 |
|
oveq2 |
|
33 |
|
fveq2 |
|
34 |
33
|
coeq2d |
|
35 |
|
oveq2 |
|
36 |
35
|
fveq1d |
|
37 |
36
|
ifeq1d |
|
38 |
37
|
mpteq2dv |
|
39 |
38
|
fveq2d |
|
40 |
34 39
|
csbeq12dv |
|
41 |
40
|
csbeq2dv |
|
42 |
32 41
|
csbeq12dv |
|
43 |
|
ovex |
|
44 |
4
|
eqeq2i |
|
45 |
|
fveq2 |
|
46 |
|
oveq2 |
|
47 |
46
|
fveq1d |
|
48 |
47
|
fveq1d |
|
49 |
48
|
fveq1d |
|
50 |
49
|
csbeq2dv |
|
51 |
45 50
|
csbeq12dv |
|
52 |
|
fvex |
|
53 |
5
|
eqeq2i |
|
54 |
|
coeq1 |
|
55 |
|
fveq1 |
|
56 |
55
|
ifeq2d |
|
57 |
56
|
mpteq2dv |
|
58 |
57
|
fveq2d |
|
59 |
54 58
|
csbeq12dv |
|
60 |
5
|
fvexi |
|
61 |
|
fvex |
|
62 |
60 61
|
coex |
|
63 |
6
|
eqeq2i |
|
64 |
|
rneq |
|
65 |
64
|
fveq2d |
|
66 |
|
coeq1 |
|
67 |
65 66
|
fveq12d |
|
68 |
67
|
fveq1d |
|
69 |
63 68
|
sylbir |
|
70 |
62 69
|
csbie |
|
71 |
59 70
|
eqtrdi |
|
72 |
53 71
|
sylbir |
|
73 |
52 72
|
csbie |
|
74 |
51 73
|
eqtrdi |
|
75 |
44 74
|
sylbir |
|
76 |
43 75
|
csbie |
|
77 |
42 76
|
eqtrdi |
|
78 |
31 77
|
sylbir |
|
79 |
30 78
|
csbie |
|
80 |
29 79
|
eqtrdi |
|