| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selvval.p |
|
| 2 |
|
selvval.b |
|
| 3 |
|
selvval.u |
|
| 4 |
|
selvval.t |
|
| 5 |
|
selvval.c |
|
| 6 |
|
selvval.d |
|
| 7 |
|
selvval.j |
|
| 8 |
|
selvval.f |
|
| 9 |
|
coeq2 |
|
| 10 |
9
|
fveq2d |
|
| 11 |
10
|
fveq1d |
|
| 12 |
11
|
csbeq2dv |
|
| 13 |
12
|
csbeq2dv |
|
| 14 |
13
|
csbeq2dv |
|
| 15 |
14
|
csbeq2dv |
|
| 16 |
|
reldmmpl |
|
| 17 |
16 1 2
|
elbasov |
|
| 18 |
8 17
|
syl |
|
| 19 |
18
|
simpld |
|
| 20 |
18
|
simprd |
|
| 21 |
19 20 7
|
selvfval |
|
| 22 |
1
|
fveq2i |
|
| 23 |
2 22
|
eqtri |
|
| 24 |
8 23
|
eleqtrdi |
|
| 25 |
|
fvex |
|
| 26 |
25
|
csbex |
|
| 27 |
26
|
csbex |
|
| 28 |
27
|
csbex |
|
| 29 |
28
|
csbex |
|
| 30 |
29
|
a1i |
|
| 31 |
15 21 24 30
|
fvmptd4 |
|
| 32 |
|
ovex |
|
| 33 |
3
|
eqeq2i |
|
| 34 |
|
oveq2 |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
coeq2d |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
fveq1d |
|
| 39 |
38
|
ifeq1d |
|
| 40 |
39
|
mpteq2dv |
|
| 41 |
40
|
fveq2d |
|
| 42 |
36 41
|
csbeq12dv |
|
| 43 |
42
|
csbeq2dv |
|
| 44 |
34 43
|
csbeq12dv |
|
| 45 |
|
ovex |
|
| 46 |
4
|
eqeq2i |
|
| 47 |
|
fveq2 |
|
| 48 |
|
oveq2 |
|
| 49 |
48
|
fveq1d |
|
| 50 |
49
|
fveq1d |
|
| 51 |
50
|
fveq1d |
|
| 52 |
51
|
csbeq2dv |
|
| 53 |
47 52
|
csbeq12dv |
|
| 54 |
|
fvex |
|
| 55 |
5
|
eqeq2i |
|
| 56 |
|
coeq1 |
|
| 57 |
|
fveq1 |
|
| 58 |
57
|
ifeq2d |
|
| 59 |
58
|
mpteq2dv |
|
| 60 |
59
|
fveq2d |
|
| 61 |
56 60
|
csbeq12dv |
|
| 62 |
5
|
fvexi |
|
| 63 |
|
fvex |
|
| 64 |
62 63
|
coex |
|
| 65 |
6
|
eqeq2i |
|
| 66 |
|
rneq |
|
| 67 |
66
|
fveq2d |
|
| 68 |
|
coeq1 |
|
| 69 |
67 68
|
fveq12d |
|
| 70 |
69
|
fveq1d |
|
| 71 |
65 70
|
sylbir |
|
| 72 |
64 71
|
csbie |
|
| 73 |
61 72
|
eqtrdi |
|
| 74 |
55 73
|
sylbir |
|
| 75 |
54 74
|
csbie |
|
| 76 |
53 75
|
eqtrdi |
|
| 77 |
46 76
|
sylbir |
|
| 78 |
45 77
|
csbie |
|
| 79 |
44 78
|
eqtrdi |
|
| 80 |
33 79
|
sylbir |
|
| 81 |
32 80
|
csbie |
|
| 82 |
31 81
|
eqtrdi |
|