Metamath Proof Explorer


Theorem selvval

Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023)

Ref Expression
Hypotheses selvval.p P = I mPoly R
selvval.b B = Base P
selvval.u U = I J mPoly R
selvval.t T = J mPoly U
selvval.c C = algSc T
selvval.d D = C algSc U
selvval.j φ J I
selvval.f φ F B
Assertion selvval φ I selectVars R J F = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x

Proof

Step Hyp Ref Expression
1 selvval.p P = I mPoly R
2 selvval.b B = Base P
3 selvval.u U = I J mPoly R
4 selvval.t T = J mPoly U
5 selvval.c C = algSc T
6 selvval.d D = C algSc U
7 selvval.j φ J I
8 selvval.f φ F B
9 coeq2 f = F d f = d F
10 9 fveq2d f = F I evalSub t ran d d f = I evalSub t ran d d F
11 10 fveq1d f = F I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
12 11 csbeq2dv f = F c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
13 12 csbeq2dv f = F algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
14 13 csbeq2dv f = F J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
15 14 csbeq2dv f = F I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
16 reldmmpl Rel dom mPoly
17 16 1 2 elbasov F B I V R V
18 8 17 syl φ I V R V
19 18 simpld φ I V
20 18 simprd φ R V
21 19 20 7 selvfval φ I selectVars R J = f Base I mPoly R I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x
22 1 fveq2i Base P = Base I mPoly R
23 2 22 eqtri B = Base I mPoly R
24 8 23 eleqtrdi φ F Base I mPoly R
25 fvex I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
26 25 csbex c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
27 26 csbex algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
28 27 csbex J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
29 28 csbex I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
30 29 a1i φ I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
31 15 21 24 30 fvmptd4 φ I selectVars R J F = I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
32 ovex I J mPoly R V
33 3 eqeq2i u = U u = I J mPoly R
34 oveq2 u = U J mPoly u = J mPoly U
35 fveq2 u = U algSc u = algSc U
36 35 coeq2d u = U c algSc u = c algSc U
37 oveq2 u = U J mVar u = J mVar U
38 37 fveq1d u = U J mVar u x = J mVar U x
39 38 ifeq1d u = U if x J J mVar u x c I J mVar R x = if x J J mVar U x c I J mVar R x
40 39 mpteq2dv u = U x I if x J J mVar u x c I J mVar R x = x I if x J J mVar U x c I J mVar R x
41 40 fveq2d u = U I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x
42 36 41 csbeq12dv u = U c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x
43 42 csbeq2dv u = U algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x
44 34 43 csbeq12dv u = U J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = J mPoly U / t algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x
45 ovex J mPoly U V
46 4 eqeq2i t = T t = J mPoly U
47 fveq2 t = T algSc t = algSc T
48 oveq2 t = T I evalSub t = I evalSub T
49 48 fveq1d t = T I evalSub t ran d = I evalSub T ran d
50 49 fveq1d t = T I evalSub t ran d d F = I evalSub T ran d d F
51 50 fveq1d t = T I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x
52 51 csbeq2dv t = T c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x
53 47 52 csbeq12dv t = T algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = algSc T / c c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x
54 fvex algSc T V
55 5 eqeq2i c = C c = algSc T
56 coeq1 c = C c algSc U = C algSc U
57 fveq1 c = C c I J mVar R x = C I J mVar R x
58 57 ifeq2d c = C if x J J mVar U x c I J mVar R x = if x J J mVar U x C I J mVar R x
59 58 mpteq2dv c = C x I if x J J mVar U x c I J mVar R x = x I if x J J mVar U x C I J mVar R x
60 59 fveq2d c = C I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran d d F x I if x J J mVar U x C I J mVar R x
61 56 60 csbeq12dv c = C c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x = C algSc U / d I evalSub T ran d d F x I if x J J mVar U x C I J mVar R x
62 5 fvexi C V
63 fvex algSc U V
64 62 63 coex C algSc U V
65 6 eqeq2i d = D d = C algSc U
66 rneq d = D ran d = ran D
67 66 fveq2d d = D I evalSub T ran d = I evalSub T ran D
68 coeq1 d = D d F = D F
69 67 68 fveq12d d = D I evalSub T ran d d F = I evalSub T ran D D F
70 69 fveq1d d = D I evalSub T ran d d F x I if x J J mVar U x C I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
71 65 70 sylbir d = C algSc U I evalSub T ran d d F x I if x J J mVar U x C I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
72 64 71 csbie C algSc U / d I evalSub T ran d d F x I if x J J mVar U x C I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
73 61 72 eqtrdi c = C c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
74 55 73 sylbir c = algSc T c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
75 54 74 csbie algSc T / c c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
76 53 75 eqtrdi t = T algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
77 46 76 sylbir t = J mPoly U algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
78 45 77 csbie J mPoly U / t algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
79 44 78 eqtrdi u = U J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
80 33 79 sylbir u = I J mPoly R J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
81 32 80 csbie I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
82 31 81 eqtrdi φ I selectVars R J F = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x