Metamath Proof Explorer


Theorem selvval

Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023)

Ref Expression
Hypotheses selvval.p P=ImPolyR
selvval.b B=BaseP
selvval.u U=IJmPolyR
selvval.t T=JmPolyU
selvval.c C=algScT
selvval.d D=CalgScU
selvval.i φIV
selvval.r φRW
selvval.j φJI
selvval.f φFB
Assertion selvval φIselectVarsRJF=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx

Proof

Step Hyp Ref Expression
1 selvval.p P=ImPolyR
2 selvval.b B=BaseP
3 selvval.u U=IJmPolyR
4 selvval.t T=JmPolyU
5 selvval.c C=algScT
6 selvval.d D=CalgScU
7 selvval.i φIV
8 selvval.r φRW
9 selvval.j φJI
10 selvval.f φFB
11 7 8 9 selvfval φIselectVarsRJ=fBaseImPolyRIJmPolyR/uJmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxJJmVaruxcIJmVarRx
12 coeq2 f=Fdf=dF
13 12 fveq2d f=FIevalSubtranddf=IevalSubtranddF
14 13 fveq1d f=FIevalSubtranddfxIifxJJmVaruxcIJmVarRx=IevalSubtranddFxIifxJJmVaruxcIJmVarRx
15 14 csbeq2dv f=FcalgScu/dIevalSubtranddfxIifxJJmVaruxcIJmVarRx=calgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx
16 15 csbeq2dv f=FalgSct/ccalgScu/dIevalSubtranddfxIifxJJmVaruxcIJmVarRx=algSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx
17 16 csbeq2dv f=FJmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxJJmVaruxcIJmVarRx=JmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx
18 17 csbeq2dv f=FIJmPolyR/uJmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxJJmVaruxcIJmVarRx=IJmPolyR/uJmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx
19 18 adantl φf=FIJmPolyR/uJmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxJJmVaruxcIJmVarRx=IJmPolyR/uJmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx
20 1 fveq2i BaseP=BaseImPolyR
21 2 20 eqtri B=BaseImPolyR
22 10 21 eleqtrdi φFBaseImPolyR
23 fvex IevalSubtranddFxIifxJJmVaruxcIJmVarRxV
24 23 csbex calgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRxV
25 24 csbex algSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRxV
26 25 csbex JmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRxV
27 26 csbex IJmPolyR/uJmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRxV
28 27 a1i φIJmPolyR/uJmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRxV
29 11 19 22 28 fvmptd φIselectVarsRJF=IJmPolyR/uJmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx
30 ovex IJmPolyRV
31 3 eqeq2i u=Uu=IJmPolyR
32 oveq2 u=UJmPolyu=JmPolyU
33 fveq2 u=UalgScu=algScU
34 33 coeq2d u=UcalgScu=calgScU
35 oveq2 u=UJmVaru=JmVarU
36 35 fveq1d u=UJmVarux=JmVarUx
37 36 ifeq1d u=UifxJJmVaruxcIJmVarRx=ifxJJmVarUxcIJmVarRx
38 37 mpteq2dv u=UxIifxJJmVaruxcIJmVarRx=xIifxJJmVarUxcIJmVarRx
39 38 fveq2d u=UIevalSubtranddFxIifxJJmVaruxcIJmVarRx=IevalSubtranddFxIifxJJmVarUxcIJmVarRx
40 34 39 csbeq12dv u=UcalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx=calgScU/dIevalSubtranddFxIifxJJmVarUxcIJmVarRx
41 40 csbeq2dv u=UalgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx=algSct/ccalgScU/dIevalSubtranddFxIifxJJmVarUxcIJmVarRx
42 32 41 csbeq12dv u=UJmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx=JmPolyU/talgSct/ccalgScU/dIevalSubtranddFxIifxJJmVarUxcIJmVarRx
43 ovex JmPolyUV
44 4 eqeq2i t=Tt=JmPolyU
45 fveq2 t=TalgSct=algScT
46 oveq2 t=TIevalSubt=IevalSubT
47 46 fveq1d t=TIevalSubtrand=IevalSubTrand
48 47 fveq1d t=TIevalSubtranddF=IevalSubTranddF
49 48 fveq1d t=TIevalSubtranddFxIifxJJmVarUxcIJmVarRx=IevalSubTranddFxIifxJJmVarUxcIJmVarRx
50 49 csbeq2dv t=TcalgScU/dIevalSubtranddFxIifxJJmVarUxcIJmVarRx=calgScU/dIevalSubTranddFxIifxJJmVarUxcIJmVarRx
51 45 50 csbeq12dv t=TalgSct/ccalgScU/dIevalSubtranddFxIifxJJmVarUxcIJmVarRx=algScT/ccalgScU/dIevalSubTranddFxIifxJJmVarUxcIJmVarRx
52 fvex algScTV
53 5 eqeq2i c=Cc=algScT
54 coeq1 c=CcalgScU=CalgScU
55 fveq1 c=CcIJmVarRx=CIJmVarRx
56 55 ifeq2d c=CifxJJmVarUxcIJmVarRx=ifxJJmVarUxCIJmVarRx
57 56 mpteq2dv c=CxIifxJJmVarUxcIJmVarRx=xIifxJJmVarUxCIJmVarRx
58 57 fveq2d c=CIevalSubTranddFxIifxJJmVarUxcIJmVarRx=IevalSubTranddFxIifxJJmVarUxCIJmVarRx
59 54 58 csbeq12dv c=CcalgScU/dIevalSubTranddFxIifxJJmVarUxcIJmVarRx=CalgScU/dIevalSubTranddFxIifxJJmVarUxCIJmVarRx
60 5 fvexi CV
61 fvex algScUV
62 60 61 coex CalgScUV
63 6 eqeq2i d=Dd=CalgScU
64 rneq d=Drand=ranD
65 64 fveq2d d=DIevalSubTrand=IevalSubTranD
66 coeq1 d=DdF=DF
67 65 66 fveq12d d=DIevalSubTranddF=IevalSubTranDDF
68 67 fveq1d d=DIevalSubTranddFxIifxJJmVarUxCIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
69 63 68 sylbir d=CalgScUIevalSubTranddFxIifxJJmVarUxCIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
70 62 69 csbie CalgScU/dIevalSubTranddFxIifxJJmVarUxCIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
71 59 70 eqtrdi c=CcalgScU/dIevalSubTranddFxIifxJJmVarUxcIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
72 53 71 sylbir c=algScTcalgScU/dIevalSubTranddFxIifxJJmVarUxcIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
73 52 72 csbie algScT/ccalgScU/dIevalSubTranddFxIifxJJmVarUxcIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
74 51 73 eqtrdi t=TalgSct/ccalgScU/dIevalSubtranddFxIifxJJmVarUxcIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
75 44 74 sylbir t=JmPolyUalgSct/ccalgScU/dIevalSubtranddFxIifxJJmVarUxcIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
76 43 75 csbie JmPolyU/talgSct/ccalgScU/dIevalSubtranddFxIifxJJmVarUxcIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
77 42 76 eqtrdi u=UJmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
78 31 77 sylbir u=IJmPolyRJmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
79 30 78 csbie IJmPolyR/uJmPolyu/talgSct/ccalgScu/dIevalSubtranddFxIifxJJmVaruxcIJmVarRx=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
80 29 79 eqtrdi φIselectVarsRJF=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx