Step |
Hyp |
Ref |
Expression |
1 |
|
selvval.p |
|
2 |
|
selvval.b |
|
3 |
|
selvval.u |
|
4 |
|
selvval.t |
|
5 |
|
selvval.c |
|
6 |
|
selvval.d |
|
7 |
|
selvval.j |
|
8 |
|
selvval.f |
|
9 |
|
coeq2 |
|
10 |
9
|
fveq2d |
|
11 |
10
|
fveq1d |
|
12 |
11
|
csbeq2dv |
|
13 |
12
|
csbeq2dv |
|
14 |
13
|
csbeq2dv |
|
15 |
14
|
csbeq2dv |
|
16 |
|
reldmmpl |
|
17 |
16 1 2
|
elbasov |
|
18 |
8 17
|
syl |
|
19 |
18
|
simpld |
|
20 |
18
|
simprd |
|
21 |
19 20 7
|
selvfval |
|
22 |
1
|
fveq2i |
|
23 |
2 22
|
eqtri |
|
24 |
8 23
|
eleqtrdi |
|
25 |
|
fvex |
|
26 |
25
|
csbex |
|
27 |
26
|
csbex |
|
28 |
27
|
csbex |
|
29 |
28
|
csbex |
|
30 |
29
|
a1i |
|
31 |
15 21 24 30
|
fvmptd4 |
|
32 |
|
ovex |
|
33 |
3
|
eqeq2i |
|
34 |
|
oveq2 |
|
35 |
|
fveq2 |
|
36 |
35
|
coeq2d |
|
37 |
|
oveq2 |
|
38 |
37
|
fveq1d |
|
39 |
38
|
ifeq1d |
|
40 |
39
|
mpteq2dv |
|
41 |
40
|
fveq2d |
|
42 |
36 41
|
csbeq12dv |
|
43 |
42
|
csbeq2dv |
|
44 |
34 43
|
csbeq12dv |
|
45 |
|
ovex |
|
46 |
4
|
eqeq2i |
|
47 |
|
fveq2 |
|
48 |
|
oveq2 |
|
49 |
48
|
fveq1d |
|
50 |
49
|
fveq1d |
|
51 |
50
|
fveq1d |
|
52 |
51
|
csbeq2dv |
|
53 |
47 52
|
csbeq12dv |
|
54 |
|
fvex |
|
55 |
5
|
eqeq2i |
|
56 |
|
coeq1 |
|
57 |
|
fveq1 |
|
58 |
57
|
ifeq2d |
|
59 |
58
|
mpteq2dv |
|
60 |
59
|
fveq2d |
|
61 |
56 60
|
csbeq12dv |
|
62 |
5
|
fvexi |
|
63 |
|
fvex |
|
64 |
62 63
|
coex |
|
65 |
6
|
eqeq2i |
|
66 |
|
rneq |
|
67 |
66
|
fveq2d |
|
68 |
|
coeq1 |
|
69 |
67 68
|
fveq12d |
|
70 |
69
|
fveq1d |
|
71 |
65 70
|
sylbir |
|
72 |
64 71
|
csbie |
|
73 |
61 72
|
eqtrdi |
|
74 |
55 73
|
sylbir |
|
75 |
54 74
|
csbie |
|
76 |
53 75
|
eqtrdi |
|
77 |
46 76
|
sylbir |
|
78 |
45 77
|
csbie |
|
79 |
44 78
|
eqtrdi |
|
80 |
33 79
|
sylbir |
|
81 |
32 80
|
csbie |
|
82 |
31 81
|
eqtrdi |
|