Metamath Proof Explorer


Theorem selvval

Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023)

Ref Expression
Hypotheses selvval.p P = I mPoly R
selvval.b B = Base P
selvval.u U = I J mPoly R
selvval.t T = J mPoly U
selvval.c C = algSc T
selvval.d D = C algSc U
selvval.i φ I V
selvval.r φ R W
selvval.j φ J I
selvval.f φ F B
Assertion selvval φ I selectVars R J F = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x

Proof

Step Hyp Ref Expression
1 selvval.p P = I mPoly R
2 selvval.b B = Base P
3 selvval.u U = I J mPoly R
4 selvval.t T = J mPoly U
5 selvval.c C = algSc T
6 selvval.d D = C algSc U
7 selvval.i φ I V
8 selvval.r φ R W
9 selvval.j φ J I
10 selvval.f φ F B
11 7 8 9 selvfval φ I selectVars R J = f Base I mPoly R I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x
12 coeq2 f = F d f = d F
13 12 fveq2d f = F I evalSub t ran d d f = I evalSub t ran d d F
14 13 fveq1d f = F I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
15 14 csbeq2dv f = F c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
16 15 csbeq2dv f = F algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
17 16 csbeq2dv f = F J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
18 17 csbeq2dv f = F I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
19 18 adantl φ f = F I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x = I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
20 1 fveq2i Base P = Base I mPoly R
21 2 20 eqtri B = Base I mPoly R
22 10 21 eleqtrdi φ F Base I mPoly R
23 fvex I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
24 23 csbex c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
25 24 csbex algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
26 25 csbex J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
27 26 csbex I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
28 27 a1i φ I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x V
29 11 19 22 28 fvmptd φ I selectVars R J F = I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x
30 ovex I J mPoly R V
31 3 eqeq2i u = U u = I J mPoly R
32 oveq2 u = U J mPoly u = J mPoly U
33 fveq2 u = U algSc u = algSc U
34 33 coeq2d u = U c algSc u = c algSc U
35 oveq2 u = U J mVar u = J mVar U
36 35 fveq1d u = U J mVar u x = J mVar U x
37 36 ifeq1d u = U if x J J mVar u x c I J mVar R x = if x J J mVar U x c I J mVar R x
38 37 mpteq2dv u = U x I if x J J mVar u x c I J mVar R x = x I if x J J mVar U x c I J mVar R x
39 38 fveq2d u = U I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x
40 34 39 csbeq12dv u = U c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x
41 40 csbeq2dv u = U algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x
42 32 41 csbeq12dv u = U J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = J mPoly U / t algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x
43 ovex J mPoly U V
44 4 eqeq2i t = T t = J mPoly U
45 fveq2 t = T algSc t = algSc T
46 oveq2 t = T I evalSub t = I evalSub T
47 46 fveq1d t = T I evalSub t ran d = I evalSub T ran d
48 47 fveq1d t = T I evalSub t ran d d F = I evalSub T ran d d F
49 48 fveq1d t = T I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x
50 49 csbeq2dv t = T c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x
51 45 50 csbeq12dv t = T algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = algSc T / c c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x
52 fvex algSc T V
53 5 eqeq2i c = C c = algSc T
54 coeq1 c = C c algSc U = C algSc U
55 fveq1 c = C c I J mVar R x = C I J mVar R x
56 55 ifeq2d c = C if x J J mVar U x c I J mVar R x = if x J J mVar U x C I J mVar R x
57 56 mpteq2dv c = C x I if x J J mVar U x c I J mVar R x = x I if x J J mVar U x C I J mVar R x
58 57 fveq2d c = C I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran d d F x I if x J J mVar U x C I J mVar R x
59 54 58 csbeq12dv c = C c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x = C algSc U / d I evalSub T ran d d F x I if x J J mVar U x C I J mVar R x
60 5 fvexi C V
61 fvex algSc U V
62 60 61 coex C algSc U V
63 6 eqeq2i d = D d = C algSc U
64 rneq d = D ran d = ran D
65 64 fveq2d d = D I evalSub T ran d = I evalSub T ran D
66 coeq1 d = D d F = D F
67 65 66 fveq12d d = D I evalSub T ran d d F = I evalSub T ran D D F
68 67 fveq1d d = D I evalSub T ran d d F x I if x J J mVar U x C I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
69 63 68 sylbir d = C algSc U I evalSub T ran d d F x I if x J J mVar U x C I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
70 62 69 csbie C algSc U / d I evalSub T ran d d F x I if x J J mVar U x C I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
71 59 70 eqtrdi c = C c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
72 53 71 sylbir c = algSc T c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
73 52 72 csbie algSc T / c c algSc U / d I evalSub T ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
74 51 73 eqtrdi t = T algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
75 44 74 sylbir t = J mPoly U algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
76 43 75 csbie J mPoly U / t algSc t / c c algSc U / d I evalSub t ran d d F x I if x J J mVar U x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
77 42 76 eqtrdi u = U J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
78 31 77 sylbir u = I J mPoly R J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
79 30 78 csbie I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d F x I if x J J mVar u x c I J mVar R x = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x
80 29 79 eqtrdi φ I selectVars R J F = I evalSub T ran D D F x I if x J J mVar U x C I J mVar R x