Metamath Proof Explorer


Theorem selvfval

Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023)

Ref Expression
Hypotheses selvffval.i φ I V
selvffval.r φ R W
selvfval.j φ J I
Assertion selvfval φ I selectVars R J = f Base I mPoly R I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x

Proof

Step Hyp Ref Expression
1 selvffval.i φ I V
2 selvffval.r φ R W
3 selvfval.j φ J I
4 1 2 selvffval φ I selectVars R = j 𝒫 I f Base I mPoly R I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x
5 difeq2 j = J I j = I J
6 5 oveq1d j = J I j mPoly R = I J mPoly R
7 oveq1 j = J j mPoly u = J mPoly u
8 eleq2 j = J x j x J
9 oveq1 j = J j mVar u = J mVar u
10 9 fveq1d j = J j mVar u x = J mVar u x
11 5 oveq1d j = J I j mVar R = I J mVar R
12 11 fveq1d j = J I j mVar R x = I J mVar R x
13 12 fveq2d j = J c I j mVar R x = c I J mVar R x
14 8 10 13 ifbieq12d j = J if x j j mVar u x c I j mVar R x = if x J J mVar u x c I J mVar R x
15 14 mpteq2dv j = J x I if x j j mVar u x c I j mVar R x = x I if x J J mVar u x c I J mVar R x
16 15 fveq2d j = J I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x = I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x
17 16 csbeq2dv j = J c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x = c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x
18 17 csbeq2dv j = J algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x = algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x
19 7 18 csbeq12dv j = J j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x = J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x
20 6 19 csbeq12dv j = J I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x = I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x
21 20 mpteq2dv j = J f Base I mPoly R I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x = f Base I mPoly R I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x
22 21 adantl φ j = J f Base I mPoly R I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x = f Base I mPoly R I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x
23 1 3 sselpwd φ J 𝒫 I
24 fvex Base I mPoly R V
25 mptexg Base I mPoly R V f Base I mPoly R I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x V
26 24 25 mp1i φ f Base I mPoly R I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x V
27 4 22 23 26 fvmptd φ I selectVars R J = f Base I mPoly R I J mPoly R / u J mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x J J mVar u x c I J mVar R x