| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selvffval.i |
|
| 2 |
|
selvffval.r |
|
| 3 |
|
selvfval.j |
|
| 4 |
1 2
|
selvffval |
|
| 5 |
|
difeq2 |
|
| 6 |
5
|
oveq1d |
|
| 7 |
|
oveq1 |
|
| 8 |
|
eleq2 |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
fveq1d |
|
| 11 |
5
|
oveq1d |
|
| 12 |
11
|
fveq1d |
|
| 13 |
12
|
fveq2d |
|
| 14 |
8 10 13
|
ifbieq12d |
|
| 15 |
14
|
mpteq2dv |
|
| 16 |
15
|
fveq2d |
|
| 17 |
16
|
csbeq2dv |
|
| 18 |
17
|
csbeq2dv |
|
| 19 |
7 18
|
csbeq12dv |
|
| 20 |
6 19
|
csbeq12dv |
|
| 21 |
20
|
mpteq2dv |
|
| 22 |
21
|
adantl |
|
| 23 |
1 3
|
sselpwd |
|
| 24 |
|
fvex |
|
| 25 |
|
mptexg |
|
| 26 |
24 25
|
mp1i |
|
| 27 |
4 22 23 26
|
fvmptd |
|