Metamath Proof Explorer


Definition df-selv

Description: Define the "variable selection" function. The function ( ( I selectVars R )J ) maps elements of ( I mPoly R ) bijectively onto ( J mPoly ( ( I \ J ) mPoly R ) ) in the natural way, for example if I = { x , y } and J = { y } it would map 1 + x + y + x y e. ( { x , y } mPoly ZZ ) to ( 1 + x ) + ( 1 + x ) y e. ( { y } mPoly ( { x } mPoly ZZ ) ) . This, for example, allows one to treat a multivariate polynomial as a univariate polynomial with coefficients in a polynomial ring with one less variable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion df-selv selectVars = i V , r V j 𝒫 i f Base i mPoly r i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cslv class selectVars
1 vi setvar i
2 cvv class V
3 vr setvar r
4 vj setvar j
5 1 cv setvar i
6 5 cpw class 𝒫 i
7 vf setvar f
8 cbs class Base
9 cmpl class mPoly
10 3 cv setvar r
11 5 10 9 co class i mPoly r
12 11 8 cfv class Base i mPoly r
13 4 cv setvar j
14 5 13 cdif class i j
15 14 10 9 co class i j mPoly r
16 vu setvar u
17 16 cv setvar u
18 13 17 9 co class j mPoly u
19 vt setvar t
20 cascl class algSc
21 19 cv setvar t
22 21 20 cfv class algSc t
23 vc setvar c
24 23 cv setvar c
25 17 20 cfv class algSc u
26 24 25 ccom class c algSc u
27 vd setvar d
28 ces class evalSub
29 5 21 28 co class i evalSub t
30 27 cv setvar d
31 30 crn class ran d
32 31 29 cfv class i evalSub t ran d
33 7 cv setvar f
34 30 33 ccom class d f
35 34 32 cfv class i evalSub t ran d d f
36 vx setvar x
37 36 cv setvar x
38 37 13 wcel wff x j
39 cmvr class mVar
40 13 17 39 co class j mVar u
41 37 40 cfv class j mVar u x
42 14 10 39 co class i j mVar r
43 37 42 cfv class i j mVar r x
44 43 24 cfv class c i j mVar r x
45 38 41 44 cif class if x j j mVar u x c i j mVar r x
46 36 5 45 cmpt class x i if x j j mVar u x c i j mVar r x
47 46 35 cfv class i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x
48 27 26 47 csb class c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x
49 23 22 48 csb class algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x
50 19 18 49 csb class j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x
51 16 15 50 csb class i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x
52 7 12 51 cmpt class f Base i mPoly r i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x
53 4 6 52 cmpt class j 𝒫 i f Base i mPoly r i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x
54 1 3 2 2 53 cmpo class i V , r V j 𝒫 i f Base i mPoly r i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x
55 0 54 wceq wff selectVars = i V , r V j 𝒫 i f Base i mPoly r i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x