Step |
Hyp |
Ref |
Expression |
0 |
|
cslv |
|- selectVars |
1 |
|
vi |
|- i |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
|
vj |
|- j |
5 |
1
|
cv |
|- i |
6 |
5
|
cpw |
|- ~P i |
7 |
|
vf |
|- f |
8 |
|
cbs |
|- Base |
9 |
|
cmpl |
|- mPoly |
10 |
3
|
cv |
|- r |
11 |
5 10 9
|
co |
|- ( i mPoly r ) |
12 |
11 8
|
cfv |
|- ( Base ` ( i mPoly r ) ) |
13 |
4
|
cv |
|- j |
14 |
5 13
|
cdif |
|- ( i \ j ) |
15 |
14 10 9
|
co |
|- ( ( i \ j ) mPoly r ) |
16 |
|
vu |
|- u |
17 |
16
|
cv |
|- u |
18 |
13 17 9
|
co |
|- ( j mPoly u ) |
19 |
|
vt |
|- t |
20 |
|
cascl |
|- algSc |
21 |
19
|
cv |
|- t |
22 |
21 20
|
cfv |
|- ( algSc ` t ) |
23 |
|
vc |
|- c |
24 |
23
|
cv |
|- c |
25 |
17 20
|
cfv |
|- ( algSc ` u ) |
26 |
24 25
|
ccom |
|- ( c o. ( algSc ` u ) ) |
27 |
|
vd |
|- d |
28 |
|
ces |
|- evalSub |
29 |
5 21 28
|
co |
|- ( i evalSub t ) |
30 |
27
|
cv |
|- d |
31 |
30
|
crn |
|- ran d |
32 |
31 29
|
cfv |
|- ( ( i evalSub t ) ` ran d ) |
33 |
7
|
cv |
|- f |
34 |
30 33
|
ccom |
|- ( d o. f ) |
35 |
34 32
|
cfv |
|- ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) |
36 |
|
vx |
|- x |
37 |
36
|
cv |
|- x |
38 |
37 13
|
wcel |
|- x e. j |
39 |
|
cmvr |
|- mVar |
40 |
13 17 39
|
co |
|- ( j mVar u ) |
41 |
37 40
|
cfv |
|- ( ( j mVar u ) ` x ) |
42 |
14 10 39
|
co |
|- ( ( i \ j ) mVar r ) |
43 |
37 42
|
cfv |
|- ( ( ( i \ j ) mVar r ) ` x ) |
44 |
43 24
|
cfv |
|- ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) |
45 |
38 41 44
|
cif |
|- if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) |
46 |
36 5 45
|
cmpt |
|- ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) |
47 |
46 35
|
cfv |
|- ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) |
48 |
27 26 47
|
csb |
|- [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) |
49 |
23 22 48
|
csb |
|- [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) |
50 |
19 18 49
|
csb |
|- [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) |
51 |
16 15 50
|
csb |
|- [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) |
52 |
7 12 51
|
cmpt |
|- ( f e. ( Base ` ( i mPoly r ) ) |-> [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) ) |
53 |
4 6 52
|
cmpt |
|- ( j e. ~P i |-> ( f e. ( Base ` ( i mPoly r ) ) |-> [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) ) ) |
54 |
1 3 2 2 53
|
cmpo |
|- ( i e. _V , r e. _V |-> ( j e. ~P i |-> ( f e. ( Base ` ( i mPoly r ) ) |-> [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) ) ) ) |
55 |
0 54
|
wceq |
|- selectVars = ( i e. _V , r e. _V |-> ( j e. ~P i |-> ( f e. ( Base ` ( i mPoly r ) ) |-> [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) ) ) ) |