Step |
Hyp |
Ref |
Expression |
0 |
|
cslv |
⊢ selectVars |
1 |
|
vi |
⊢ 𝑖 |
2 |
|
cvv |
⊢ V |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
vj |
⊢ 𝑗 |
5 |
1
|
cv |
⊢ 𝑖 |
6 |
5
|
cpw |
⊢ 𝒫 𝑖 |
7 |
|
vf |
⊢ 𝑓 |
8 |
|
cbs |
⊢ Base |
9 |
|
cmpl |
⊢ mPoly |
10 |
3
|
cv |
⊢ 𝑟 |
11 |
5 10 9
|
co |
⊢ ( 𝑖 mPoly 𝑟 ) |
12 |
11 8
|
cfv |
⊢ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) |
13 |
4
|
cv |
⊢ 𝑗 |
14 |
5 13
|
cdif |
⊢ ( 𝑖 ∖ 𝑗 ) |
15 |
14 10 9
|
co |
⊢ ( ( 𝑖 ∖ 𝑗 ) mPoly 𝑟 ) |
16 |
|
vu |
⊢ 𝑢 |
17 |
16
|
cv |
⊢ 𝑢 |
18 |
13 17 9
|
co |
⊢ ( 𝑗 mPoly 𝑢 ) |
19 |
|
vt |
⊢ 𝑡 |
20 |
|
cascl |
⊢ algSc |
21 |
19
|
cv |
⊢ 𝑡 |
22 |
21 20
|
cfv |
⊢ ( algSc ‘ 𝑡 ) |
23 |
|
vc |
⊢ 𝑐 |
24 |
23
|
cv |
⊢ 𝑐 |
25 |
17 20
|
cfv |
⊢ ( algSc ‘ 𝑢 ) |
26 |
24 25
|
ccom |
⊢ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) |
27 |
|
vd |
⊢ 𝑑 |
28 |
|
ces |
⊢ evalSub |
29 |
5 21 28
|
co |
⊢ ( 𝑖 evalSub 𝑡 ) |
30 |
27
|
cv |
⊢ 𝑑 |
31 |
30
|
crn |
⊢ ran 𝑑 |
32 |
31 29
|
cfv |
⊢ ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) |
33 |
7
|
cv |
⊢ 𝑓 |
34 |
30 33
|
ccom |
⊢ ( 𝑑 ∘ 𝑓 ) |
35 |
34 32
|
cfv |
⊢ ( ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) |
36 |
|
vx |
⊢ 𝑥 |
37 |
36
|
cv |
⊢ 𝑥 |
38 |
37 13
|
wcel |
⊢ 𝑥 ∈ 𝑗 |
39 |
|
cmvr |
⊢ mVar |
40 |
13 17 39
|
co |
⊢ ( 𝑗 mVar 𝑢 ) |
41 |
37 40
|
cfv |
⊢ ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) |
42 |
14 10 39
|
co |
⊢ ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) |
43 |
37 42
|
cfv |
⊢ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) |
44 |
43 24
|
cfv |
⊢ ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) |
45 |
38 41 44
|
cif |
⊢ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) |
46 |
36 5 45
|
cmpt |
⊢ ( 𝑥 ∈ 𝑖 ↦ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) ) |
47 |
46 35
|
cfv |
⊢ ( ( ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝑖 ↦ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) ) ) |
48 |
27 26 47
|
csb |
⊢ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝑖 ↦ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) ) ) |
49 |
23 22 48
|
csb |
⊢ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝑖 ↦ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) ) ) |
50 |
19 18 49
|
csb |
⊢ ⦋ ( 𝑗 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝑖 ↦ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) ) ) |
51 |
16 15 50
|
csb |
⊢ ⦋ ( ( 𝑖 ∖ 𝑗 ) mPoly 𝑟 ) / 𝑢 ⦌ ⦋ ( 𝑗 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝑖 ↦ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) ) ) |
52 |
7 12 51
|
cmpt |
⊢ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ⦋ ( ( 𝑖 ∖ 𝑗 ) mPoly 𝑟 ) / 𝑢 ⦌ ⦋ ( 𝑗 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝑖 ↦ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) ) ) ) |
53 |
4 6 52
|
cmpt |
⊢ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ⦋ ( ( 𝑖 ∖ 𝑗 ) mPoly 𝑟 ) / 𝑢 ⦌ ⦋ ( 𝑗 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝑖 ↦ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) ) ) ) ) |
54 |
1 3 2 2 53
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ⦋ ( ( 𝑖 ∖ 𝑗 ) mPoly 𝑟 ) / 𝑢 ⦌ ⦋ ( 𝑗 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝑖 ↦ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) ) ) ) ) ) |
55 |
0 54
|
wceq |
⊢ selectVars = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ⦋ ( ( 𝑖 ∖ 𝑗 ) mPoly 𝑟 ) / 𝑢 ⦌ ⦋ ( 𝑗 mPoly 𝑢 ) / 𝑡 ⦌ ⦋ ( algSc ‘ 𝑡 ) / 𝑐 ⦌ ⦋ ( 𝑐 ∘ ( algSc ‘ 𝑢 ) ) / 𝑑 ⦌ ( ( ( ( 𝑖 evalSub 𝑡 ) ‘ ran 𝑑 ) ‘ ( 𝑑 ∘ 𝑓 ) ) ‘ ( 𝑥 ∈ 𝑖 ↦ if ( 𝑥 ∈ 𝑗 , ( ( 𝑗 mVar 𝑢 ) ‘ 𝑥 ) , ( 𝑐 ‘ ( ( ( 𝑖 ∖ 𝑗 ) mVar 𝑟 ) ‘ 𝑥 ) ) ) ) ) ) ) ) |