Description: Define the "variable selection" function. The function ( ( I selectVars R )J ) maps elements of ( I mPoly R ) bijectively onto ( J mPoly ( ( I \ J ) mPoly R ) ) in the natural way, for example if I = { x , y } and J = { y } it would map 1 + x + y + x y e. ( { x , y } mPoly ZZ ) to ( 1 + x ) + ( 1 + x ) y e. ( { y } mPoly ( { x } mPoly ZZ ) ) . This, for example, allows one to treat a multivariate polynomial as a univariate polynomial with coefficients in a polynomial ring with one less variable. (Contributed by Mario Carneiro, 21-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-selv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cslv | |
|
1 | vi | |
|
2 | cvv | |
|
3 | vr | |
|
4 | vj | |
|
5 | 1 | cv | |
6 | 5 | cpw | |
7 | vf | |
|
8 | cbs | |
|
9 | cmpl | |
|
10 | 3 | cv | |
11 | 5 10 9 | co | |
12 | 11 8 | cfv | |
13 | 4 | cv | |
14 | 5 13 | cdif | |
15 | 14 10 9 | co | |
16 | vu | |
|
17 | 16 | cv | |
18 | 13 17 9 | co | |
19 | vt | |
|
20 | cascl | |
|
21 | 19 | cv | |
22 | 21 20 | cfv | |
23 | vc | |
|
24 | 23 | cv | |
25 | 17 20 | cfv | |
26 | 24 25 | ccom | |
27 | vd | |
|
28 | ces | |
|
29 | 5 21 28 | co | |
30 | 27 | cv | |
31 | 30 | crn | |
32 | 31 29 | cfv | |
33 | 7 | cv | |
34 | 30 33 | ccom | |
35 | 34 32 | cfv | |
36 | vx | |
|
37 | 36 | cv | |
38 | 37 13 | wcel | |
39 | cmvr | |
|
40 | 13 17 39 | co | |
41 | 37 40 | cfv | |
42 | 14 10 39 | co | |
43 | 37 42 | cfv | |
44 | 43 24 | cfv | |
45 | 38 41 44 | cif | |
46 | 36 5 45 | cmpt | |
47 | 46 35 | cfv | |
48 | 27 26 47 | csb | |
49 | 23 22 48 | csb | |
50 | 19 18 49 | csb | |
51 | 16 15 50 | csb | |
52 | 7 12 51 | cmpt | |
53 | 4 6 52 | cmpt | |
54 | 1 3 2 2 53 | cmpo | |
55 | 0 54 | wceq | |