Metamath Proof Explorer


Definition df-selv

Description: Define the "variable selection" function. The function ( ( I selectVars R )J ) maps elements of ( I mPoly R ) bijectively onto ( J mPoly ( ( I \ J ) mPoly R ) ) in the natural way, for example if I = { x , y } and J = { y } it would map 1 + x + y + x y e. ( { x , y } mPoly ZZ ) to ( 1 + x ) + ( 1 + x ) y e. ( { y } mPoly ( { x } mPoly ZZ ) ) . This, for example, allows one to treat a multivariate polynomial as a univariate polynomial with coefficients in a polynomial ring with one less variable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion df-selv selectVars=iV,rVj𝒫ifBaseimPolyrijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cslv classselectVars
1 vi setvari
2 cvv classV
3 vr setvarr
4 vj setvarj
5 1 cv setvari
6 5 cpw class𝒫i
7 vf setvarf
8 cbs classBase
9 cmpl classmPoly
10 3 cv setvarr
11 5 10 9 co classimPolyr
12 11 8 cfv classBaseimPolyr
13 4 cv setvarj
14 5 13 cdif classij
15 14 10 9 co classijmPolyr
16 vu setvaru
17 16 cv setvaru
18 13 17 9 co classjmPolyu
19 vt setvart
20 cascl classalgSc
21 19 cv setvart
22 21 20 cfv classalgSct
23 vc setvarc
24 23 cv setvarc
25 17 20 cfv classalgScu
26 24 25 ccom classcalgScu
27 vd setvard
28 ces classevalSub
29 5 21 28 co classievalSubt
30 27 cv setvard
31 30 crn classrand
32 31 29 cfv classievalSubtrand
33 7 cv setvarf
34 30 33 ccom classdf
35 34 32 cfv classievalSubtranddf
36 vx setvarx
37 36 cv setvarx
38 37 13 wcel wffxj
39 cmvr classmVar
40 13 17 39 co classjmVaru
41 37 40 cfv classjmVarux
42 14 10 39 co classijmVarr
43 37 42 cfv classijmVarrx
44 43 24 cfv classcijmVarrx
45 38 41 44 cif classifxjjmVaruxcijmVarrx
46 36 5 45 cmpt classxiifxjjmVaruxcijmVarrx
47 46 35 cfv classievalSubtranddfxiifxjjmVaruxcijmVarrx
48 27 26 47 csb classcalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx
49 23 22 48 csb classalgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx
50 19 18 49 csb classjmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx
51 16 15 50 csb classijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx
52 7 12 51 cmpt classfBaseimPolyrijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx
53 4 6 52 cmpt classj𝒫ifBaseimPolyrijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx
54 1 3 2 2 53 cmpo classiV,rVj𝒫ifBaseimPolyrijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx
55 0 54 wceq wffselectVars=iV,rVj𝒫ifBaseimPolyrijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx