Step |
Hyp |
Ref |
Expression |
1 |
|
selvval.p |
|- P = ( I mPoly R ) |
2 |
|
selvval.b |
|- B = ( Base ` P ) |
3 |
|
selvval.u |
|- U = ( ( I \ J ) mPoly R ) |
4 |
|
selvval.t |
|- T = ( J mPoly U ) |
5 |
|
selvval.c |
|- C = ( algSc ` T ) |
6 |
|
selvval.d |
|- D = ( C o. ( algSc ` U ) ) |
7 |
|
selvval.i |
|- ( ph -> I e. V ) |
8 |
|
selvval.r |
|- ( ph -> R e. W ) |
9 |
|
selvval.j |
|- ( ph -> J C_ I ) |
10 |
|
selvval.f |
|- ( ph -> F e. B ) |
11 |
7 8 9
|
selvfval |
|- ( ph -> ( ( I selectVars R ) ` J ) = ( f e. ( Base ` ( I mPoly R ) ) |-> [_ ( ( I \ J ) mPoly R ) / u ]_ [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) ) |
12 |
|
coeq2 |
|- ( f = F -> ( d o. f ) = ( d o. F ) ) |
13 |
12
|
fveq2d |
|- ( f = F -> ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) = ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ) |
14 |
13
|
fveq1d |
|- ( f = F -> ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
15 |
14
|
csbeq2dv |
|- ( f = F -> [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
16 |
15
|
csbeq2dv |
|- ( f = F -> [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
17 |
16
|
csbeq2dv |
|- ( f = F -> [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
18 |
17
|
csbeq2dv |
|- ( f = F -> [_ ( ( I \ J ) mPoly R ) / u ]_ [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( ( I \ J ) mPoly R ) / u ]_ [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
19 |
18
|
adantl |
|- ( ( ph /\ f = F ) -> [_ ( ( I \ J ) mPoly R ) / u ]_ [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( ( I \ J ) mPoly R ) / u ]_ [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
20 |
1
|
fveq2i |
|- ( Base ` P ) = ( Base ` ( I mPoly R ) ) |
21 |
2 20
|
eqtri |
|- B = ( Base ` ( I mPoly R ) ) |
22 |
10 21
|
eleqtrdi |
|- ( ph -> F e. ( Base ` ( I mPoly R ) ) ) |
23 |
|
fvex |
|- ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) e. _V |
24 |
23
|
csbex |
|- [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) e. _V |
25 |
24
|
csbex |
|- [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) e. _V |
26 |
25
|
csbex |
|- [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) e. _V |
27 |
26
|
csbex |
|- [_ ( ( I \ J ) mPoly R ) / u ]_ [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) e. _V |
28 |
27
|
a1i |
|- ( ph -> [_ ( ( I \ J ) mPoly R ) / u ]_ [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) e. _V ) |
29 |
11 19 22 28
|
fvmptd |
|- ( ph -> ( ( ( I selectVars R ) ` J ) ` F ) = [_ ( ( I \ J ) mPoly R ) / u ]_ [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
30 |
|
ovex |
|- ( ( I \ J ) mPoly R ) e. _V |
31 |
3
|
eqeq2i |
|- ( u = U <-> u = ( ( I \ J ) mPoly R ) ) |
32 |
|
oveq2 |
|- ( u = U -> ( J mPoly u ) = ( J mPoly U ) ) |
33 |
|
fveq2 |
|- ( u = U -> ( algSc ` u ) = ( algSc ` U ) ) |
34 |
33
|
coeq2d |
|- ( u = U -> ( c o. ( algSc ` u ) ) = ( c o. ( algSc ` U ) ) ) |
35 |
|
oveq2 |
|- ( u = U -> ( J mVar u ) = ( J mVar U ) ) |
36 |
35
|
fveq1d |
|- ( u = U -> ( ( J mVar u ) ` x ) = ( ( J mVar U ) ` x ) ) |
37 |
36
|
ifeq1d |
|- ( u = U -> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) = if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) |
38 |
37
|
mpteq2dv |
|- ( u = U -> ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) = ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) |
39 |
38
|
fveq2d |
|- ( u = U -> ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
40 |
34 39
|
csbeq12dv |
|- ( u = U -> [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
41 |
40
|
csbeq2dv |
|- ( u = U -> [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
42 |
32 41
|
csbeq12dv |
|- ( u = U -> [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( J mPoly U ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
43 |
|
ovex |
|- ( J mPoly U ) e. _V |
44 |
4
|
eqeq2i |
|- ( t = T <-> t = ( J mPoly U ) ) |
45 |
|
fveq2 |
|- ( t = T -> ( algSc ` t ) = ( algSc ` T ) ) |
46 |
|
oveq2 |
|- ( t = T -> ( I evalSub t ) = ( I evalSub T ) ) |
47 |
46
|
fveq1d |
|- ( t = T -> ( ( I evalSub t ) ` ran d ) = ( ( I evalSub T ) ` ran d ) ) |
48 |
47
|
fveq1d |
|- ( t = T -> ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) = ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ) |
49 |
48
|
fveq1d |
|- ( t = T -> ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
50 |
49
|
csbeq2dv |
|- ( t = T -> [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
51 |
45 50
|
csbeq12dv |
|- ( t = T -> [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( algSc ` T ) / c ]_ [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
52 |
|
fvex |
|- ( algSc ` T ) e. _V |
53 |
5
|
eqeq2i |
|- ( c = C <-> c = ( algSc ` T ) ) |
54 |
|
coeq1 |
|- ( c = C -> ( c o. ( algSc ` U ) ) = ( C o. ( algSc ` U ) ) ) |
55 |
|
fveq1 |
|- ( c = C -> ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) = ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) |
56 |
55
|
ifeq2d |
|- ( c = C -> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) = if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) |
57 |
56
|
mpteq2dv |
|- ( c = C -> ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) = ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) |
58 |
57
|
fveq2d |
|- ( c = C -> ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
59 |
54 58
|
csbeq12dv |
|- ( c = C -> [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = [_ ( C o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
60 |
5
|
fvexi |
|- C e. _V |
61 |
|
fvex |
|- ( algSc ` U ) e. _V |
62 |
60 61
|
coex |
|- ( C o. ( algSc ` U ) ) e. _V |
63 |
6
|
eqeq2i |
|- ( d = D <-> d = ( C o. ( algSc ` U ) ) ) |
64 |
|
rneq |
|- ( d = D -> ran d = ran D ) |
65 |
64
|
fveq2d |
|- ( d = D -> ( ( I evalSub T ) ` ran d ) = ( ( I evalSub T ) ` ran D ) ) |
66 |
|
coeq1 |
|- ( d = D -> ( d o. F ) = ( D o. F ) ) |
67 |
65 66
|
fveq12d |
|- ( d = D -> ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) = ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ) |
68 |
67
|
fveq1d |
|- ( d = D -> ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
69 |
63 68
|
sylbir |
|- ( d = ( C o. ( algSc ` U ) ) -> ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
70 |
62 69
|
csbie |
|- [_ ( C o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) |
71 |
59 70
|
eqtrdi |
|- ( c = C -> [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
72 |
53 71
|
sylbir |
|- ( c = ( algSc ` T ) -> [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
73 |
52 72
|
csbie |
|- [_ ( algSc ` T ) / c ]_ [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub T ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) |
74 |
51 73
|
eqtrdi |
|- ( t = T -> [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
75 |
44 74
|
sylbir |
|- ( t = ( J mPoly U ) -> [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
76 |
43 75
|
csbie |
|- [_ ( J mPoly U ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` U ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) |
77 |
42 76
|
eqtrdi |
|- ( u = U -> [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
78 |
31 77
|
sylbir |
|- ( u = ( ( I \ J ) mPoly R ) -> [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |
79 |
30 78
|
csbie |
|- [_ ( ( I \ J ) mPoly R ) / u ]_ [_ ( J mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar u ) ` x ) , ( c ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) |
80 |
29 79
|
eqtrdi |
|- ( ph -> ( ( ( I selectVars R ) ` J ) ` F ) = ( ( ( ( I evalSub T ) ` ran D ) ` ( D o. F ) ) ` ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) ) ) |