Metamath Proof Explorer


Theorem selvcllem4

Description: The fourth argument passed to evalSub is in the domain (a polynomial in ( I mPoly ( J mPoly ( ( I \ J ) mPoly R ) ) ) ). (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvcllem4.p
|- P = ( I mPoly R )
selvcllem4.b
|- B = ( Base ` P )
selvcllem4.u
|- U = ( ( I \ J ) mPoly R )
selvcllem4.t
|- T = ( J mPoly U )
selvcllem4.c
|- C = ( algSc ` T )
selvcllem4.d
|- D = ( C o. ( algSc ` U ) )
selvcllem4.s
|- S = ( T |`s ran D )
selvcllem4.w
|- W = ( I mPoly S )
selvcllem4.x
|- X = ( Base ` W )
selvcllem4.i
|- ( ph -> I e. V )
selvcllem4.r
|- ( ph -> R e. CRing )
selvcllem4.j
|- ( ph -> J C_ I )
selvcllem4.f
|- ( ph -> F e. B )
Assertion selvcllem4
|- ( ph -> ( D o. F ) e. X )

Proof

Step Hyp Ref Expression
1 selvcllem4.p
 |-  P = ( I mPoly R )
2 selvcllem4.b
 |-  B = ( Base ` P )
3 selvcllem4.u
 |-  U = ( ( I \ J ) mPoly R )
4 selvcllem4.t
 |-  T = ( J mPoly U )
5 selvcllem4.c
 |-  C = ( algSc ` T )
6 selvcllem4.d
 |-  D = ( C o. ( algSc ` U ) )
7 selvcllem4.s
 |-  S = ( T |`s ran D )
8 selvcllem4.w
 |-  W = ( I mPoly S )
9 selvcllem4.x
 |-  X = ( Base ` W )
10 selvcllem4.i
 |-  ( ph -> I e. V )
11 selvcllem4.r
 |-  ( ph -> R e. CRing )
12 selvcllem4.j
 |-  ( ph -> J C_ I )
13 selvcllem4.f
 |-  ( ph -> F e. B )
14 10 difexd
 |-  ( ph -> ( I \ J ) e. _V )
15 10 12 ssexd
 |-  ( ph -> J e. _V )
16 3 4 5 6 14 15 11 selvcllem2
 |-  ( ph -> D e. ( R RingHom T ) )
17 3 4 5 6 14 15 11 selvcllem3
 |-  ( ph -> ran D e. ( SubRing ` T ) )
18 ssidd
 |-  ( ph -> ran D C_ ran D )
19 7 resrhm2b
 |-  ( ( ran D e. ( SubRing ` T ) /\ ran D C_ ran D ) -> ( D e. ( R RingHom T ) <-> D e. ( R RingHom S ) ) )
20 17 18 19 syl2anc
 |-  ( ph -> ( D e. ( R RingHom T ) <-> D e. ( R RingHom S ) ) )
21 16 20 mpbid
 |-  ( ph -> D e. ( R RingHom S ) )
22 rhmghm
 |-  ( D e. ( R RingHom S ) -> D e. ( R GrpHom S ) )
23 ghmmhm
 |-  ( D e. ( R GrpHom S ) -> D e. ( R MndHom S ) )
24 21 22 23 3syl
 |-  ( ph -> D e. ( R MndHom S ) )
25 1 8 2 9 10 24 13 mhmcompl
 |-  ( ph -> ( D o. F ) e. X )