Step |
Hyp |
Ref |
Expression |
1 |
|
selvcllem4.p |
|- P = ( I mPoly R ) |
2 |
|
selvcllem4.b |
|- B = ( Base ` P ) |
3 |
|
selvcllem4.u |
|- U = ( ( I \ J ) mPoly R ) |
4 |
|
selvcllem4.t |
|- T = ( J mPoly U ) |
5 |
|
selvcllem4.c |
|- C = ( algSc ` T ) |
6 |
|
selvcllem4.d |
|- D = ( C o. ( algSc ` U ) ) |
7 |
|
selvcllem4.s |
|- S = ( T |`s ran D ) |
8 |
|
selvcllem4.w |
|- W = ( I mPoly S ) |
9 |
|
selvcllem4.x |
|- X = ( Base ` W ) |
10 |
|
selvcllem4.i |
|- ( ph -> I e. V ) |
11 |
|
selvcllem4.r |
|- ( ph -> R e. CRing ) |
12 |
|
selvcllem4.j |
|- ( ph -> J C_ I ) |
13 |
|
selvcllem4.f |
|- ( ph -> F e. B ) |
14 |
10
|
difexd |
|- ( ph -> ( I \ J ) e. _V ) |
15 |
10 12
|
ssexd |
|- ( ph -> J e. _V ) |
16 |
3 4 5 6 14 15 11
|
selvcllem2 |
|- ( ph -> D e. ( R RingHom T ) ) |
17 |
3 4 5 6 14 15 11
|
selvcllem3 |
|- ( ph -> ran D e. ( SubRing ` T ) ) |
18 |
|
ssidd |
|- ( ph -> ran D C_ ran D ) |
19 |
7
|
resrhm2b |
|- ( ( ran D e. ( SubRing ` T ) /\ ran D C_ ran D ) -> ( D e. ( R RingHom T ) <-> D e. ( R RingHom S ) ) ) |
20 |
17 18 19
|
syl2anc |
|- ( ph -> ( D e. ( R RingHom T ) <-> D e. ( R RingHom S ) ) ) |
21 |
16 20
|
mpbid |
|- ( ph -> D e. ( R RingHom S ) ) |
22 |
|
rhmghm |
|- ( D e. ( R RingHom S ) -> D e. ( R GrpHom S ) ) |
23 |
|
ghmmhm |
|- ( D e. ( R GrpHom S ) -> D e. ( R MndHom S ) ) |
24 |
21 22 23
|
3syl |
|- ( ph -> D e. ( R MndHom S ) ) |
25 |
1 8 2 9 10 24 13
|
mhmcompl |
|- ( ph -> ( D o. F ) e. X ) |