Metamath Proof Explorer


Theorem selvcllem4

Description: The fourth argument passed to evalSub is in the domain (a polynomial in ( I mPoly ( J mPoly ( ( I \ J ) mPoly R ) ) ) ). (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvcllem4.p P=ImPolyR
selvcllem4.b B=BaseP
selvcllem4.u U=IJmPolyR
selvcllem4.t T=JmPolyU
selvcllem4.c C=algScT
selvcllem4.d D=CalgScU
selvcllem4.s S=T𝑠ranD
selvcllem4.w W=ImPolyS
selvcllem4.x X=BaseW
selvcllem4.i φIV
selvcllem4.r φRCRing
selvcllem4.j φJI
selvcllem4.f φFB
Assertion selvcllem4 φDFX

Proof

Step Hyp Ref Expression
1 selvcllem4.p P=ImPolyR
2 selvcllem4.b B=BaseP
3 selvcllem4.u U=IJmPolyR
4 selvcllem4.t T=JmPolyU
5 selvcllem4.c C=algScT
6 selvcllem4.d D=CalgScU
7 selvcllem4.s S=T𝑠ranD
8 selvcllem4.w W=ImPolyS
9 selvcllem4.x X=BaseW
10 selvcllem4.i φIV
11 selvcllem4.r φRCRing
12 selvcllem4.j φJI
13 selvcllem4.f φFB
14 10 difexd φIJV
15 10 12 ssexd φJV
16 3 4 5 6 14 15 11 selvcllem2 φDRRingHomT
17 3 4 5 6 14 15 11 selvcllem3 φranDSubRingT
18 ssidd φranDranD
19 7 resrhm2b ranDSubRingTranDranDDRRingHomTDRRingHomS
20 17 18 19 syl2anc φDRRingHomTDRRingHomS
21 16 20 mpbid φDRRingHomS
22 rhmghm DRRingHomSDRGrpHomS
23 ghmmhm DRGrpHomSDRMndHomS
24 21 22 23 3syl φDRMndHomS
25 1 8 2 9 10 24 13 mhmcompl φDFX