Description: The fourth argument passed to evalSub is in the domain (a polynomial in ( I mPoly ( J mPoly ( ( I \ J ) mPoly R ) ) ) ). (Contributed by SN, 5-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | selvcllem4.p | |
|
selvcllem4.b | |
||
selvcllem4.u | |
||
selvcllem4.t | |
||
selvcllem4.c | |
||
selvcllem4.d | |
||
selvcllem4.s | |
||
selvcllem4.w | |
||
selvcllem4.x | |
||
selvcllem4.i | |
||
selvcllem4.r | |
||
selvcllem4.j | |
||
selvcllem4.f | |
||
Assertion | selvcllem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvcllem4.p | |
|
2 | selvcllem4.b | |
|
3 | selvcllem4.u | |
|
4 | selvcllem4.t | |
|
5 | selvcllem4.c | |
|
6 | selvcllem4.d | |
|
7 | selvcllem4.s | |
|
8 | selvcllem4.w | |
|
9 | selvcllem4.x | |
|
10 | selvcllem4.i | |
|
11 | selvcllem4.r | |
|
12 | selvcllem4.j | |
|
13 | selvcllem4.f | |
|
14 | 10 | difexd | |
15 | 10 12 | ssexd | |
16 | 3 4 5 6 14 15 11 | selvcllem2 | |
17 | 3 4 5 6 14 15 11 | selvcllem3 | |
18 | ssidd | |
|
19 | 7 | resrhm2b | |
20 | 17 18 19 | syl2anc | |
21 | 16 20 | mpbid | |
22 | rhmghm | |
|
23 | ghmmhm | |
|
24 | 21 22 23 | 3syl | |
25 | 1 8 2 9 10 24 13 | mhmcompl | |