Step |
Hyp |
Ref |
Expression |
1 |
|
selvcllemh.u |
|- U = ( ( I \ J ) mPoly R ) |
2 |
|
selvcllemh.t |
|- T = ( J mPoly U ) |
3 |
|
selvcllemh.c |
|- C = ( algSc ` T ) |
4 |
|
selvcllemh.d |
|- D = ( C o. ( algSc ` U ) ) |
5 |
|
selvcllemh.q |
|- Q = ( ( I evalSub T ) ` ran D ) |
6 |
|
selvcllemh.w |
|- W = ( I mPoly S ) |
7 |
|
selvcllemh.s |
|- S = ( T |`s ran D ) |
8 |
|
selvcllemh.x |
|- X = ( T ^s ( B ^m I ) ) |
9 |
|
selvcllemh.b |
|- B = ( Base ` T ) |
10 |
|
selvcllemh.i |
|- ( ph -> I e. V ) |
11 |
|
selvcllemh.r |
|- ( ph -> R e. CRing ) |
12 |
|
selvcllemh.j |
|- ( ph -> J C_ I ) |
13 |
10 12
|
ssexd |
|- ( ph -> J e. _V ) |
14 |
10
|
difexd |
|- ( ph -> ( I \ J ) e. _V ) |
15 |
1
|
mplcrng |
|- ( ( ( I \ J ) e. _V /\ R e. CRing ) -> U e. CRing ) |
16 |
14 11 15
|
syl2anc |
|- ( ph -> U e. CRing ) |
17 |
2
|
mplcrng |
|- ( ( J e. _V /\ U e. CRing ) -> T e. CRing ) |
18 |
13 16 17
|
syl2anc |
|- ( ph -> T e. CRing ) |
19 |
1 2 3 4 14 13 11
|
selvcllem3 |
|- ( ph -> ran D e. ( SubRing ` T ) ) |
20 |
5 6 7 8 9
|
evlsrhm |
|- ( ( I e. V /\ T e. CRing /\ ran D e. ( SubRing ` T ) ) -> Q e. ( W RingHom X ) ) |
21 |
10 18 19 20
|
syl3anc |
|- ( ph -> Q e. ( W RingHom X ) ) |