| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selvcllemh.u |
|- U = ( ( I \ J ) mPoly R ) |
| 2 |
|
selvcllemh.t |
|- T = ( J mPoly U ) |
| 3 |
|
selvcllemh.c |
|- C = ( algSc ` T ) |
| 4 |
|
selvcllemh.d |
|- D = ( C o. ( algSc ` U ) ) |
| 5 |
|
selvcllemh.q |
|- Q = ( ( I evalSub T ) ` ran D ) |
| 6 |
|
selvcllemh.w |
|- W = ( I mPoly S ) |
| 7 |
|
selvcllemh.s |
|- S = ( T |`s ran D ) |
| 8 |
|
selvcllemh.x |
|- X = ( T ^s ( B ^m I ) ) |
| 9 |
|
selvcllemh.b |
|- B = ( Base ` T ) |
| 10 |
|
selvcllemh.i |
|- ( ph -> I e. V ) |
| 11 |
|
selvcllemh.r |
|- ( ph -> R e. CRing ) |
| 12 |
|
selvcllemh.j |
|- ( ph -> J C_ I ) |
| 13 |
10 12
|
ssexd |
|- ( ph -> J e. _V ) |
| 14 |
10
|
difexd |
|- ( ph -> ( I \ J ) e. _V ) |
| 15 |
1
|
mplcrng |
|- ( ( ( I \ J ) e. _V /\ R e. CRing ) -> U e. CRing ) |
| 16 |
14 11 15
|
syl2anc |
|- ( ph -> U e. CRing ) |
| 17 |
2
|
mplcrng |
|- ( ( J e. _V /\ U e. CRing ) -> T e. CRing ) |
| 18 |
13 16 17
|
syl2anc |
|- ( ph -> T e. CRing ) |
| 19 |
1 2 3 4 14 13 11
|
selvcllem3 |
|- ( ph -> ran D e. ( SubRing ` T ) ) |
| 20 |
5 6 7 8 9
|
evlsrhm |
|- ( ( I e. V /\ T e. CRing /\ ran D e. ( SubRing ` T ) ) -> Q e. ( W RingHom X ) ) |
| 21 |
10 18 19 20
|
syl3anc |
|- ( ph -> Q e. ( W RingHom X ) ) |