Metamath Proof Explorer


Theorem selvcllemh

Description: Apply the third argument ( selvcllem3 ) to show that Q is a (ring) homomorphism. (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvcllemh.u
|- U = ( ( I \ J ) mPoly R )
selvcllemh.t
|- T = ( J mPoly U )
selvcllemh.c
|- C = ( algSc ` T )
selvcllemh.d
|- D = ( C o. ( algSc ` U ) )
selvcllemh.q
|- Q = ( ( I evalSub T ) ` ran D )
selvcllemh.w
|- W = ( I mPoly S )
selvcllemh.s
|- S = ( T |`s ran D )
selvcllemh.x
|- X = ( T ^s ( B ^m I ) )
selvcllemh.b
|- B = ( Base ` T )
selvcllemh.i
|- ( ph -> I e. V )
selvcllemh.r
|- ( ph -> R e. CRing )
selvcllemh.j
|- ( ph -> J C_ I )
Assertion selvcllemh
|- ( ph -> Q e. ( W RingHom X ) )

Proof

Step Hyp Ref Expression
1 selvcllemh.u
 |-  U = ( ( I \ J ) mPoly R )
2 selvcllemh.t
 |-  T = ( J mPoly U )
3 selvcllemh.c
 |-  C = ( algSc ` T )
4 selvcllemh.d
 |-  D = ( C o. ( algSc ` U ) )
5 selvcllemh.q
 |-  Q = ( ( I evalSub T ) ` ran D )
6 selvcllemh.w
 |-  W = ( I mPoly S )
7 selvcllemh.s
 |-  S = ( T |`s ran D )
8 selvcllemh.x
 |-  X = ( T ^s ( B ^m I ) )
9 selvcllemh.b
 |-  B = ( Base ` T )
10 selvcllemh.i
 |-  ( ph -> I e. V )
11 selvcllemh.r
 |-  ( ph -> R e. CRing )
12 selvcllemh.j
 |-  ( ph -> J C_ I )
13 10 12 ssexd
 |-  ( ph -> J e. _V )
14 10 difexd
 |-  ( ph -> ( I \ J ) e. _V )
15 1 mplcrng
 |-  ( ( ( I \ J ) e. _V /\ R e. CRing ) -> U e. CRing )
16 14 11 15 syl2anc
 |-  ( ph -> U e. CRing )
17 2 mplcrng
 |-  ( ( J e. _V /\ U e. CRing ) -> T e. CRing )
18 13 16 17 syl2anc
 |-  ( ph -> T e. CRing )
19 1 2 3 4 14 13 11 selvcllem3
 |-  ( ph -> ran D e. ( SubRing ` T ) )
20 5 6 7 8 9 evlsrhm
 |-  ( ( I e. V /\ T e. CRing /\ ran D e. ( SubRing ` T ) ) -> Q e. ( W RingHom X ) )
21 10 18 19 20 syl3anc
 |-  ( ph -> Q e. ( W RingHom X ) )