Metamath Proof Explorer


Theorem selvcl

Description: Closure of the "variable selection" function. (Contributed by SN, 22-Feb-2024)

Ref Expression
Hypotheses selvcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
selvcl.b 𝐵 = ( Base ‘ 𝑃 )
selvcl.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
selvcl.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvcl.e 𝐸 = ( Base ‘ 𝑇 )
selvcl.i ( 𝜑𝐼𝑉 )
selvcl.r ( 𝜑𝑅 ∈ CRing )
selvcl.j ( 𝜑𝐽𝐼 )
selvcl.f ( 𝜑𝐹𝐵 )
Assertion selvcl ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 selvcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 selvcl.b 𝐵 = ( Base ‘ 𝑃 )
3 selvcl.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
4 selvcl.t 𝑇 = ( 𝐽 mPoly 𝑈 )
5 selvcl.e 𝐸 = ( Base ‘ 𝑇 )
6 selvcl.i ( 𝜑𝐼𝑉 )
7 selvcl.r ( 𝜑𝑅 ∈ CRing )
8 selvcl.j ( 𝜑𝐽𝐼 )
9 selvcl.f ( 𝜑𝐹𝐵 )
10 eqid ( algSc ‘ 𝑇 ) = ( algSc ‘ 𝑇 )
11 eqid ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) = ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) )
12 1 2 3 4 10 11 6 7 8 9 selvval ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) )
13 eqid ( 𝑇s ( 𝐸m 𝐼 ) ) = ( 𝑇s ( 𝐸m 𝐼 ) )
14 eqid ( Base ‘ ( 𝑇s ( 𝐸m 𝐼 ) ) ) = ( Base ‘ ( 𝑇s ( 𝐸m 𝐼 ) ) )
15 6 8 ssexd ( 𝜑𝐽 ∈ V )
16 difexg ( 𝐼𝑉 → ( 𝐼𝐽 ) ∈ V )
17 6 16 syl ( 𝜑 → ( 𝐼𝐽 ) ∈ V )
18 3 mplcrng ( ( ( 𝐼𝐽 ) ∈ V ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ CRing )
19 17 7 18 syl2anc ( 𝜑𝑈 ∈ CRing )
20 4 mplcrng ( ( 𝐽 ∈ V ∧ 𝑈 ∈ CRing ) → 𝑇 ∈ CRing )
21 15 19 20 syl2anc ( 𝜑𝑇 ∈ CRing )
22 ovexd ( 𝜑 → ( 𝐸m 𝐼 ) ∈ V )
23 eqid ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) = ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) )
24 eqid ( 𝐼 mPoly ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) = ( 𝐼 mPoly ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) )
25 eqid ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) = ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) )
26 3 4 10 11 23 24 25 13 5 6 7 8 selvval2lemn ( 𝜑 → ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ∈ ( ( 𝐼 mPoly ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) RingHom ( 𝑇s ( 𝐸m 𝐼 ) ) ) )
27 eqid ( Base ‘ ( 𝐼 mPoly ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) )
28 27 14 rhmf ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ∈ ( ( 𝐼 mPoly ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) RingHom ( 𝑇s ( 𝐸m 𝐼 ) ) ) → ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) : ( Base ‘ ( 𝐼 mPoly ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) ) ⟶ ( Base ‘ ( 𝑇s ( 𝐸m 𝐼 ) ) ) )
29 26 28 syl ( 𝜑 → ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) : ( Base ‘ ( 𝐼 mPoly ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) ) ⟶ ( Base ‘ ( 𝑇s ( 𝐸m 𝐼 ) ) ) )
30 1 2 3 4 10 11 25 24 27 6 7 8 9 selvval2lem4 ( 𝜑 → ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑇s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) ) )
31 29 30 ffvelrnd ( 𝜑 → ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ∈ ( Base ‘ ( 𝑇s ( 𝐸m 𝐼 ) ) ) )
32 13 5 14 21 22 31 pwselbas ( 𝜑 → ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) : ( 𝐸m 𝐼 ) ⟶ 𝐸 )
33 eqid ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) = ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) )
34 3 4 10 5 33 6 7 8 selvval2lem5 ( 𝜑 → ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ∈ ( 𝐸m 𝐼 ) )
35 32 34 ffvelrnd ( 𝜑 → ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∈ 𝐸 )
36 12 35 eqeltrd ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝐸 )