Metamath Proof Explorer


Theorem sepdisj

Description: Separated sets are disjoint. Note that in general separatedness also requires T C_ U. J and ( S i^i ( ( clsJ )T ) ) = (/) as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024)

Ref Expression
Hypotheses sepdisj.1
|- ( ph -> J e. Top )
sepdisj.2
|- ( ph -> S C_ U. J )
sepdisj.3
|- ( ph -> ( ( ( cls ` J ) ` S ) i^i T ) = (/) )
Assertion sepdisj
|- ( ph -> ( S i^i T ) = (/) )

Proof

Step Hyp Ref Expression
1 sepdisj.1
 |-  ( ph -> J e. Top )
2 sepdisj.2
 |-  ( ph -> S C_ U. J )
3 sepdisj.3
 |-  ( ph -> ( ( ( cls ` J ) ` S ) i^i T ) = (/) )
4 eqid
 |-  U. J = U. J
5 4 sscls
 |-  ( ( J e. Top /\ S C_ U. J ) -> S C_ ( ( cls ` J ) ` S ) )
6 1 2 5 syl2anc
 |-  ( ph -> S C_ ( ( cls ` J ) ` S ) )
7 6 3 ssdisjd
 |-  ( ph -> ( S i^i T ) = (/) )