Description: Separated sets are disjoint. Note that in general separatedness also requires T C_ U. J and ( S i^i ( ( clsJ )T ) ) = (/) as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sepdisj.1 | |- ( ph -> J e. Top ) |
|
sepdisj.2 | |- ( ph -> S C_ U. J ) |
||
sepdisj.3 | |- ( ph -> ( ( ( cls ` J ) ` S ) i^i T ) = (/) ) |
||
Assertion | sepdisj | |- ( ph -> ( S i^i T ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sepdisj.1 | |- ( ph -> J e. Top ) |
|
2 | sepdisj.2 | |- ( ph -> S C_ U. J ) |
|
3 | sepdisj.3 | |- ( ph -> ( ( ( cls ` J ) ` S ) i^i T ) = (/) ) |
|
4 | eqid | |- U. J = U. J |
|
5 | 4 | sscls | |- ( ( J e. Top /\ S C_ U. J ) -> S C_ ( ( cls ` J ) ` S ) ) |
6 | 1 2 5 | syl2anc | |- ( ph -> S C_ ( ( cls ` J ) ` S ) ) |
7 | 6 3 | ssdisjd | |- ( ph -> ( S i^i T ) = (/) ) |