Step |
Hyp |
Ref |
Expression |
1 |
|
seppsepf.1 |
|- ( ph -> E. f e. ( J Cn II ) ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) ) |
2 |
|
eqimss |
|- ( S = ( `' f " { 0 } ) -> S C_ ( `' f " { 0 } ) ) |
3 |
|
eqimss |
|- ( T = ( `' f " { 1 } ) -> T C_ ( `' f " { 1 } ) ) |
4 |
2 3
|
anim12i |
|- ( ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) -> ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) |
5 |
4
|
reximi |
|- ( E. f e. ( J Cn II ) ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) -> E. f e. ( J Cn II ) ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) |
6 |
1 5
|
syl |
|- ( ph -> E. f e. ( J Cn II ) ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) |