Metamath Proof Explorer


Theorem seppsepf

Description: If two sets are precisely separated by a continuous function, then they are separated by the continuous function. (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Hypothesis seppsepf.1
|- ( ph -> E. f e. ( J Cn II ) ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) )
Assertion seppsepf
|- ( ph -> E. f e. ( J Cn II ) ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) )

Proof

Step Hyp Ref Expression
1 seppsepf.1
 |-  ( ph -> E. f e. ( J Cn II ) ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) )
2 eqimss
 |-  ( S = ( `' f " { 0 } ) -> S C_ ( `' f " { 0 } ) )
3 eqimss
 |-  ( T = ( `' f " { 1 } ) -> T C_ ( `' f " { 1 } ) )
4 2 3 anim12i
 |-  ( ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) -> ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) )
5 4 reximi
 |-  ( E. f e. ( J Cn II ) ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) -> E. f e. ( J Cn II ) ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) )
6 1 5 syl
 |-  ( ph -> E. f e. ( J Cn II ) ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) )