Step |
Hyp |
Ref |
Expression |
1 |
|
seppsepf.1 |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) ) |
2 |
|
eqimss |
⊢ ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) → 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ) |
3 |
|
eqimss |
⊢ ( 𝑇 = ( ◡ 𝑓 “ { 1 } ) → 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) |
4 |
2 3
|
anim12i |
⊢ ( ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) → ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) |
5 |
4
|
reximi |
⊢ ( ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) → ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) |