Metamath Proof Explorer


Theorem seppsepf

Description: If two sets are precisely separated by a continuous function, then they are separated by the continuous function. (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Hypothesis seppsepf.1 ( 𝜑 → ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 = ( 𝑓 “ { 0 } ) ∧ 𝑇 = ( 𝑓 “ { 1 } ) ) )
Assertion seppsepf ( 𝜑 → ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 ⊆ ( 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( 𝑓 “ { 1 } ) ) )

Proof

Step Hyp Ref Expression
1 seppsepf.1 ( 𝜑 → ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 = ( 𝑓 “ { 0 } ) ∧ 𝑇 = ( 𝑓 “ { 1 } ) ) )
2 eqimss ( 𝑆 = ( 𝑓 “ { 0 } ) → 𝑆 ⊆ ( 𝑓 “ { 0 } ) )
3 eqimss ( 𝑇 = ( 𝑓 “ { 1 } ) → 𝑇 ⊆ ( 𝑓 “ { 1 } ) )
4 2 3 anim12i ( ( 𝑆 = ( 𝑓 “ { 0 } ) ∧ 𝑇 = ( 𝑓 “ { 1 } ) ) → ( 𝑆 ⊆ ( 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( 𝑓 “ { 1 } ) ) )
5 4 reximi ( ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 = ( 𝑓 “ { 0 } ) ∧ 𝑇 = ( 𝑓 “ { 1 } ) ) → ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 ⊆ ( 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( 𝑓 “ { 1 } ) ) )
6 1 5 syl ( 𝜑 → ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 ⊆ ( 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( 𝑓 “ { 1 } ) ) )