| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seppsepf.1 |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) ) |
| 2 |
|
simprl |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) ) → 𝑆 = ( ◡ 𝑓 “ { 0 } ) ) |
| 3 |
|
simpl |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) ) → 𝑓 ∈ ( 𝐽 Cn II ) ) |
| 4 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 5 |
|
iccid |
⊢ ( 0 ∈ ℝ* → ( 0 [,] 0 ) = { 0 } ) |
| 6 |
4 5
|
ax-mp |
⊢ ( 0 [,] 0 ) = { 0 } |
| 7 |
|
0le0 |
⊢ 0 ≤ 0 |
| 8 |
|
0le1 |
⊢ 0 ≤ 1 |
| 9 |
|
icccldii |
⊢ ( ( 0 ≤ 0 ∧ 0 ≤ 1 ) → ( 0 [,] 0 ) ∈ ( Clsd ‘ II ) ) |
| 10 |
7 8 9
|
mp2an |
⊢ ( 0 [,] 0 ) ∈ ( Clsd ‘ II ) |
| 11 |
6 10
|
eqeltrri |
⊢ { 0 } ∈ ( Clsd ‘ II ) |
| 12 |
|
cnclima |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ { 0 } ∈ ( Clsd ‘ II ) ) → ( ◡ 𝑓 “ { 0 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 13 |
3 11 12
|
sylancl |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) ) → ( ◡ 𝑓 “ { 0 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 14 |
2 13
|
eqeltrd |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| 15 |
|
simprr |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) ) → 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) |
| 16 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 17 |
|
iccid |
⊢ ( 1 ∈ ℝ* → ( 1 [,] 1 ) = { 1 } ) |
| 18 |
16 17
|
ax-mp |
⊢ ( 1 [,] 1 ) = { 1 } |
| 19 |
|
1le1 |
⊢ 1 ≤ 1 |
| 20 |
|
icccldii |
⊢ ( ( 0 ≤ 1 ∧ 1 ≤ 1 ) → ( 1 [,] 1 ) ∈ ( Clsd ‘ II ) ) |
| 21 |
8 19 20
|
mp2an |
⊢ ( 1 [,] 1 ) ∈ ( Clsd ‘ II ) |
| 22 |
18 21
|
eqeltrri |
⊢ { 1 } ∈ ( Clsd ‘ II ) |
| 23 |
|
cnclima |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ { 1 } ∈ ( Clsd ‘ II ) ) → ( ◡ 𝑓 “ { 1 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 24 |
3 22 23
|
sylancl |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) ) → ( ◡ 𝑓 “ { 1 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 25 |
15 24
|
eqeltrd |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) ) → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) |
| 26 |
14 25
|
jca |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 27 |
26
|
rexlimiva |
⊢ ( ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 = ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 = ( ◡ 𝑓 “ { 1 } ) ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 28 |
1 27
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) ) |