Step |
Hyp |
Ref |
Expression |
1 |
|
seppsepf.1 |
|- ( ph -> E. f e. ( J Cn II ) ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) ) |
2 |
|
simprl |
|- ( ( f e. ( J Cn II ) /\ ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) ) -> S = ( `' f " { 0 } ) ) |
3 |
|
simpl |
|- ( ( f e. ( J Cn II ) /\ ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) ) -> f e. ( J Cn II ) ) |
4 |
|
0xr |
|- 0 e. RR* |
5 |
|
iccid |
|- ( 0 e. RR* -> ( 0 [,] 0 ) = { 0 } ) |
6 |
4 5
|
ax-mp |
|- ( 0 [,] 0 ) = { 0 } |
7 |
|
0le0 |
|- 0 <_ 0 |
8 |
|
0le1 |
|- 0 <_ 1 |
9 |
|
icccldii |
|- ( ( 0 <_ 0 /\ 0 <_ 1 ) -> ( 0 [,] 0 ) e. ( Clsd ` II ) ) |
10 |
7 8 9
|
mp2an |
|- ( 0 [,] 0 ) e. ( Clsd ` II ) |
11 |
6 10
|
eqeltrri |
|- { 0 } e. ( Clsd ` II ) |
12 |
|
cnclima |
|- ( ( f e. ( J Cn II ) /\ { 0 } e. ( Clsd ` II ) ) -> ( `' f " { 0 } ) e. ( Clsd ` J ) ) |
13 |
3 11 12
|
sylancl |
|- ( ( f e. ( J Cn II ) /\ ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) ) -> ( `' f " { 0 } ) e. ( Clsd ` J ) ) |
14 |
2 13
|
eqeltrd |
|- ( ( f e. ( J Cn II ) /\ ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) ) -> S e. ( Clsd ` J ) ) |
15 |
|
simprr |
|- ( ( f e. ( J Cn II ) /\ ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) ) -> T = ( `' f " { 1 } ) ) |
16 |
|
1xr |
|- 1 e. RR* |
17 |
|
iccid |
|- ( 1 e. RR* -> ( 1 [,] 1 ) = { 1 } ) |
18 |
16 17
|
ax-mp |
|- ( 1 [,] 1 ) = { 1 } |
19 |
|
1le1 |
|- 1 <_ 1 |
20 |
|
icccldii |
|- ( ( 0 <_ 1 /\ 1 <_ 1 ) -> ( 1 [,] 1 ) e. ( Clsd ` II ) ) |
21 |
8 19 20
|
mp2an |
|- ( 1 [,] 1 ) e. ( Clsd ` II ) |
22 |
18 21
|
eqeltrri |
|- { 1 } e. ( Clsd ` II ) |
23 |
|
cnclima |
|- ( ( f e. ( J Cn II ) /\ { 1 } e. ( Clsd ` II ) ) -> ( `' f " { 1 } ) e. ( Clsd ` J ) ) |
24 |
3 22 23
|
sylancl |
|- ( ( f e. ( J Cn II ) /\ ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) ) -> ( `' f " { 1 } ) e. ( Clsd ` J ) ) |
25 |
15 24
|
eqeltrd |
|- ( ( f e. ( J Cn II ) /\ ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) ) -> T e. ( Clsd ` J ) ) |
26 |
14 25
|
jca |
|- ( ( f e. ( J Cn II ) /\ ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) ) -> ( S e. ( Clsd ` J ) /\ T e. ( Clsd ` J ) ) ) |
27 |
26
|
rexlimiva |
|- ( E. f e. ( J Cn II ) ( S = ( `' f " { 0 } ) /\ T = ( `' f " { 1 } ) ) -> ( S e. ( Clsd ` J ) /\ T e. ( Clsd ` J ) ) ) |
28 |
1 27
|
syl |
|- ( ph -> ( S e. ( Clsd ` J ) /\ T e. ( Clsd ` J ) ) ) |