Step |
Hyp |
Ref |
Expression |
1 |
|
iccssxr |
|- ( 0 [,] 1 ) C_ RR* |
2 |
|
iccordt |
|- ( A [,] B ) e. ( Clsd ` ( ordTop ` <_ ) ) |
3 |
|
0re |
|- 0 e. RR |
4 |
|
1re |
|- 1 e. RR |
5 |
|
iccss |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ A /\ B <_ 1 ) ) -> ( A [,] B ) C_ ( 0 [,] 1 ) ) |
6 |
3 4 5
|
mpanl12 |
|- ( ( 0 <_ A /\ B <_ 1 ) -> ( A [,] B ) C_ ( 0 [,] 1 ) ) |
7 |
|
letopuni |
|- RR* = U. ( ordTop ` <_ ) |
8 |
7
|
restcldi |
|- ( ( ( 0 [,] 1 ) C_ RR* /\ ( A [,] B ) e. ( Clsd ` ( ordTop ` <_ ) ) /\ ( A [,] B ) C_ ( 0 [,] 1 ) ) -> ( A [,] B ) e. ( Clsd ` ( ( ordTop ` <_ ) |`t ( 0 [,] 1 ) ) ) ) |
9 |
1 2 6 8
|
mp3an12i |
|- ( ( 0 <_ A /\ B <_ 1 ) -> ( A [,] B ) e. ( Clsd ` ( ( ordTop ` <_ ) |`t ( 0 [,] 1 ) ) ) ) |
10 |
|
dfii5 |
|- II = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
11 |
|
ordtresticc |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] 1 ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
12 |
10 11
|
eqtr4i |
|- II = ( ( ordTop ` <_ ) |`t ( 0 [,] 1 ) ) |
13 |
12
|
fveq2i |
|- ( Clsd ` II ) = ( Clsd ` ( ( ordTop ` <_ ) |`t ( 0 [,] 1 ) ) ) |
14 |
9 13
|
eleqtrrdi |
|- ( ( 0 <_ A /\ B <_ 1 ) -> ( A [,] B ) e. ( Clsd ` II ) ) |