Metamath Proof Explorer


Theorem iccid

Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009)

Ref Expression
Assertion iccid ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } )

Proof

Step Hyp Ref Expression
1 elicc1 ( ( 𝐴 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐴 ) ↔ ( 𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴 ) ) )
2 1 anidms ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ( 𝐴 [,] 𝐴 ) ↔ ( 𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴 ) ) )
3 xrlenlt ( ( 𝐴 ∈ ℝ*𝑥 ∈ ℝ* ) → ( 𝐴𝑥 ↔ ¬ 𝑥 < 𝐴 ) )
4 xrlenlt ( ( 𝑥 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝑥𝐴 ↔ ¬ 𝐴 < 𝑥 ) )
5 4 ancoms ( ( 𝐴 ∈ ℝ*𝑥 ∈ ℝ* ) → ( 𝑥𝐴 ↔ ¬ 𝐴 < 𝑥 ) )
6 xrlttri3 ( ( 𝑥 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝑥 = 𝐴 ↔ ( ¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥 ) ) )
7 6 biimprd ( ( 𝑥 ∈ ℝ*𝐴 ∈ ℝ* ) → ( ( ¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥 ) → 𝑥 = 𝐴 ) )
8 7 ancoms ( ( 𝐴 ∈ ℝ*𝑥 ∈ ℝ* ) → ( ( ¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥 ) → 𝑥 = 𝐴 ) )
9 8 expcomd ( ( 𝐴 ∈ ℝ*𝑥 ∈ ℝ* ) → ( ¬ 𝐴 < 𝑥 → ( ¬ 𝑥 < 𝐴𝑥 = 𝐴 ) ) )
10 5 9 sylbid ( ( 𝐴 ∈ ℝ*𝑥 ∈ ℝ* ) → ( 𝑥𝐴 → ( ¬ 𝑥 < 𝐴𝑥 = 𝐴 ) ) )
11 10 com23 ( ( 𝐴 ∈ ℝ*𝑥 ∈ ℝ* ) → ( ¬ 𝑥 < 𝐴 → ( 𝑥𝐴𝑥 = 𝐴 ) ) )
12 3 11 sylbid ( ( 𝐴 ∈ ℝ*𝑥 ∈ ℝ* ) → ( 𝐴𝑥 → ( 𝑥𝐴𝑥 = 𝐴 ) ) )
13 12 ex ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ℝ* → ( 𝐴𝑥 → ( 𝑥𝐴𝑥 = 𝐴 ) ) ) )
14 13 3impd ( 𝐴 ∈ ℝ* → ( ( 𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴 ) → 𝑥 = 𝐴 ) )
15 eleq1a ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴𝑥 ∈ ℝ* ) )
16 xrleid ( 𝐴 ∈ ℝ*𝐴𝐴 )
17 breq2 ( 𝑥 = 𝐴 → ( 𝐴𝑥𝐴𝐴 ) )
18 16 17 syl5ibrcom ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴𝐴𝑥 ) )
19 breq1 ( 𝑥 = 𝐴 → ( 𝑥𝐴𝐴𝐴 ) )
20 16 19 syl5ibrcom ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴𝑥𝐴 ) )
21 15 18 20 3jcad ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴 → ( 𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴 ) ) )
22 14 21 impbid ( 𝐴 ∈ ℝ* → ( ( 𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴 ) ↔ 𝑥 = 𝐴 ) )
23 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
24 22 23 bitr4di ( 𝐴 ∈ ℝ* → ( ( 𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴 ) ↔ 𝑥 ∈ { 𝐴 } ) )
25 2 24 bitrd ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ( 𝐴 [,] 𝐴 ) ↔ 𝑥 ∈ { 𝐴 } ) )
26 25 eqrdv ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } )