Step |
Hyp |
Ref |
Expression |
1 |
|
seqabs.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
2 |
|
seqabs.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
3 |
|
seqabs.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
4 |
|
fzfid |
|- ( ph -> ( M ... N ) e. Fin ) |
5 |
4 2
|
fsumabs |
|- ( ph -> ( abs ` sum_ k e. ( M ... N ) ( F ` k ) ) <_ sum_ k e. ( M ... N ) ( abs ` ( F ` k ) ) ) |
6 |
|
eqidd |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = ( F ` k ) ) |
7 |
6 1 2
|
fsumser |
|- ( ph -> sum_ k e. ( M ... N ) ( F ` k ) = ( seq M ( + , F ) ` N ) ) |
8 |
7
|
fveq2d |
|- ( ph -> ( abs ` sum_ k e. ( M ... N ) ( F ` k ) ) = ( abs ` ( seq M ( + , F ) ` N ) ) ) |
9 |
|
abscl |
|- ( ( F ` k ) e. CC -> ( abs ` ( F ` k ) ) e. RR ) |
10 |
9
|
recnd |
|- ( ( F ` k ) e. CC -> ( abs ` ( F ` k ) ) e. CC ) |
11 |
2 10
|
syl |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( abs ` ( F ` k ) ) e. CC ) |
12 |
3 1 11
|
fsumser |
|- ( ph -> sum_ k e. ( M ... N ) ( abs ` ( F ` k ) ) = ( seq M ( + , G ) ` N ) ) |
13 |
5 8 12
|
3brtr3d |
|- ( ph -> ( abs ` ( seq M ( + , F ) ` N ) ) <_ ( seq M ( + , G ) ` N ) ) |