| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqabs.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 2 |
|
seqabs.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 3 |
|
seqabs.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 4 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
| 5 |
4 2
|
fsumabs |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 6 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 7 |
6 1 2
|
fsumser |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 9 |
|
abscl |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 10 |
9
|
recnd |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 11 |
2 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 12 |
3 1 11
|
fsumser |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 13 |
5 8 12
|
3brtr3d |
⊢ ( 𝜑 → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |