Metamath Proof Explorer


Theorem iserabs

Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses iserabs.1 𝑍 = ( ℤ𝑀 )
iserabs.2 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 )
iserabs.3 ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 )
iserabs.5 ( 𝜑𝑀 ∈ ℤ )
iserabs.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
iserabs.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) = ( abs ‘ ( 𝐹𝑘 ) ) )
Assertion iserabs ( 𝜑 → ( abs ‘ 𝐴 ) ≤ 𝐵 )

Proof

Step Hyp Ref Expression
1 iserabs.1 𝑍 = ( ℤ𝑀 )
2 iserabs.2 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 )
3 iserabs.3 ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 )
4 iserabs.5 ( 𝜑𝑀 ∈ ℤ )
5 iserabs.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
6 iserabs.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) = ( abs ‘ ( 𝐹𝑘 ) ) )
7 1 fvexi 𝑍 ∈ V
8 7 mptex ( 𝑚𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ∈ V
9 8 a1i ( 𝜑 → ( 𝑚𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ∈ V )
10 1 4 5 serf ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ )
11 10 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ )
12 2fveq3 ( 𝑚 = 𝑛 → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) )
13 eqid ( 𝑚𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) = ( 𝑚𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) )
14 fvex ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ∈ V
15 12 13 14 fvmpt ( 𝑛𝑍 → ( ( 𝑚𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) )
16 15 adantl ( ( 𝜑𝑛𝑍 ) → ( ( 𝑚𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) )
17 1 2 9 4 11 16 climabs ( 𝜑 → ( 𝑚𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ⇝ ( abs ‘ 𝐴 ) )
18 11 abscld ( ( 𝜑𝑛𝑍 ) → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ∈ ℝ )
19 16 18 eqeltrd ( ( 𝜑𝑛𝑍 ) → ( ( 𝑚𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ∈ ℝ )
20 5 abscld ( ( 𝜑𝑘𝑍 ) → ( abs ‘ ( 𝐹𝑘 ) ) ∈ ℝ )
21 6 20 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℝ )
22 1 4 21 serfre ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℝ )
23 22 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ )
24 simpr ( ( 𝜑𝑛𝑍 ) → 𝑛𝑍 )
25 24 1 eleqtrdi ( ( 𝜑𝑛𝑍 ) → 𝑛 ∈ ( ℤ𝑀 ) )
26 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ𝑀 ) )
27 26 1 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘𝑍 )
28 27 5 sylan2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
29 28 adantlr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
30 27 6 sylan2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺𝑘 ) = ( abs ‘ ( 𝐹𝑘 ) ) )
31 30 adantlr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺𝑘 ) = ( abs ‘ ( 𝐹𝑘 ) ) )
32 25 29 31 seqabs ( ( 𝜑𝑛𝑍 ) → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) )
33 16 32 eqbrtrd ( ( 𝜑𝑛𝑍 ) → ( ( 𝑚𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) )
34 1 4 17 3 19 23 33 climle ( 𝜑 → ( abs ‘ 𝐴 ) ≤ 𝐵 )