| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq |
|- ( A = B -> ( a A b ) = ( a B b ) ) |
| 2 |
1
|
opeq2d |
|- ( A = B -> <. suc a , ( a A b ) >. = <. suc a , ( a B b ) >. ) |
| 3 |
2
|
mpoeq3dv |
|- ( A = B -> ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) = ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) ) |
| 4 |
|
fveq2 |
|- ( C = D -> ( _I ` C ) = ( _I ` D ) ) |
| 5 |
4
|
opeq2d |
|- ( C = D -> <. (/) , ( _I ` C ) >. = <. (/) , ( _I ` D ) >. ) |
| 6 |
|
rdgeq12 |
|- ( ( ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) = ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) /\ <. (/) , ( _I ` C ) >. = <. (/) , ( _I ` D ) >. ) -> rec ( ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) , <. (/) , ( _I ` C ) >. ) = rec ( ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) , <. (/) , ( _I ` D ) >. ) ) |
| 7 |
3 5 6
|
syl2an |
|- ( ( A = B /\ C = D ) -> rec ( ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) , <. (/) , ( _I ` C ) >. ) = rec ( ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) , <. (/) , ( _I ` D ) >. ) ) |
| 8 |
7
|
imaeq1d |
|- ( ( A = B /\ C = D ) -> ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) , <. (/) , ( _I ` C ) >. ) " _om ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) , <. (/) , ( _I ` D ) >. ) " _om ) ) |
| 9 |
|
df-seqom |
|- seqom ( A , C ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) , <. (/) , ( _I ` C ) >. ) " _om ) |
| 10 |
|
df-seqom |
|- seqom ( B , D ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) , <. (/) , ( _I ` D ) >. ) " _om ) |
| 11 |
8 9 10
|
3eqtr4g |
|- ( ( A = B /\ C = D ) -> seqom ( A , C ) = seqom ( B , D ) ) |