Metamath Proof Explorer


Theorem setrec2v

Description: Version of setrec2 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by Emmett Weisz, 6-Mar-2021)

Ref Expression
Hypotheses setrec2.b
|- B = setrecs ( F )
setrec2.c
|- ( ph -> A. a ( a C_ C -> ( F ` a ) C_ C ) )
Assertion setrec2v
|- ( ph -> B C_ C )

Proof

Step Hyp Ref Expression
1 setrec2.b
 |-  B = setrecs ( F )
2 setrec2.c
 |-  ( ph -> A. a ( a C_ C -> ( F ` a ) C_ C ) )
3 nfcv
 |-  F/_ a F
4 3 1 2 setrec2
 |-  ( ph -> B C_ C )