Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs ( F ) is a subclass of all classes C that are closed under F . Taken together, Theorems setrec1 and setrec2v uniquely determine setrecs ( F ) to be the minimal class closed under F .
We express this by saying that if F respects the C_ relation and C is closed under F , then B C_ C . By substituting strategically constructed classes for C , we can easily prove many useful properties. Although this theorem cannot show equality between B and C , if we intend to prove equality between B and some particular class (such as On ), we first apply this theorem, then the relevant induction theorem (such as tfi ) to the other class.
(Contributed by Emmett Weisz, 2-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | setrec2.1 | |- F/_ a F |
|
setrec2.2 | |- B = setrecs ( F ) |
||
setrec2.3 | |- ( ph -> A. a ( a C_ C -> ( F ` a ) C_ C ) ) |
||
Assertion | setrec2 | |- ( ph -> B C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrec2.1 | |- F/_ a F |
|
2 | setrec2.2 | |- B = setrecs ( F ) |
|
3 | setrec2.3 | |- ( ph -> A. a ( a C_ C -> ( F ` a ) C_ C ) ) |
|
4 | nfcv | |- F/_ a x |
|
5 | nfcv | |- F/_ a u |
|
6 | 4 1 5 | nfbr | |- F/ a x F u |
7 | 6 | nfeuw | |- F/ a E! u x F u |
8 | 7 | nfab | |- F/_ a { x | E! u x F u } |
9 | 1 8 | nfres | |- F/_ a ( F |` { x | E! u x F u } ) |
10 | setrec2lem1 | |- ( ( F |` { x | E! u x F u } ) ` w ) = ( F ` w ) |
|
11 | 10 | sseq1i | |- ( ( ( F |` { x | E! u x F u } ) ` w ) C_ z <-> ( F ` w ) C_ z ) |
12 | 11 | imbi2i | |- ( ( w C_ z -> ( ( F |` { x | E! u x F u } ) ` w ) C_ z ) <-> ( w C_ z -> ( F ` w ) C_ z ) ) |
13 | 12 | imbi2i | |- ( ( w C_ y -> ( w C_ z -> ( ( F |` { x | E! u x F u } ) ` w ) C_ z ) ) <-> ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) ) |
14 | 13 | albii | |- ( A. w ( w C_ y -> ( w C_ z -> ( ( F |` { x | E! u x F u } ) ` w ) C_ z ) ) <-> A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) ) |
15 | 14 | imbi1i | |- ( ( A. w ( w C_ y -> ( w C_ z -> ( ( F |` { x | E! u x F u } ) ` w ) C_ z ) ) -> y C_ z ) <-> ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) ) |
16 | 15 | albii | |- ( A. z ( A. w ( w C_ y -> ( w C_ z -> ( ( F |` { x | E! u x F u } ) ` w ) C_ z ) ) -> y C_ z ) <-> A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) ) |
17 | 16 | abbii | |- { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( ( F |` { x | E! u x F u } ) ` w ) C_ z ) ) -> y C_ z ) } = { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
18 | 17 | unieqi | |- U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( ( F |` { x | E! u x F u } ) ` w ) C_ z ) ) -> y C_ z ) } = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
19 | df-setrecs | |- setrecs ( ( F |` { x | E! u x F u } ) ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( ( F |` { x | E! u x F u } ) ` w ) C_ z ) ) -> y C_ z ) } |
|
20 | df-setrecs | |- setrecs ( F ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
|
21 | 18 19 20 | 3eqtr4ri | |- setrecs ( F ) = setrecs ( ( F |` { x | E! u x F u } ) ) |
22 | 2 21 | eqtri | |- B = setrecs ( ( F |` { x | E! u x F u } ) ) |
23 | setrec2lem2 | |- Fun ( F |` { x | E! u x F u } ) |
|
24 | setrec2lem1 | |- ( ( F |` { x | E! u x F u } ) ` a ) = ( F ` a ) |
|
25 | 24 | sseq1i | |- ( ( ( F |` { x | E! u x F u } ) ` a ) C_ C <-> ( F ` a ) C_ C ) |
26 | 25 | imbi2i | |- ( ( a C_ C -> ( ( F |` { x | E! u x F u } ) ` a ) C_ C ) <-> ( a C_ C -> ( F ` a ) C_ C ) ) |
27 | 26 | albii | |- ( A. a ( a C_ C -> ( ( F |` { x | E! u x F u } ) ` a ) C_ C ) <-> A. a ( a C_ C -> ( F ` a ) C_ C ) ) |
28 | 3 27 | sylibr | |- ( ph -> A. a ( a C_ C -> ( ( F |` { x | E! u x F u } ) ` a ) C_ C ) ) |
29 | 9 22 23 28 | setrec2fun | |- ( ph -> B C_ C ) |