Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs ( F ) is a subclass of all classes C that are closed under F . Taken together, Theorems setrec1 and setrec2v say that setrecs ( F ) is the minimal class closed under F .
We express this by saying that if F respects the C_ relation and C is closed under F , then B C_ C . By substituting strategically constructed classes for C , we can easily prove many useful properties. Although this theorem cannot show equality between B and C , if we intend to prove equality between B and some particular class (such as On ), we first apply this theorem, then the relevant induction theorem (such as tfi ) to the other class. (Contributed by Emmett Weisz, 15-Feb-2021) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | setrec2fun.1 | |- F/_ a F |
|
setrec2fun.2 | |- B = setrecs ( F ) |
||
setrec2fun.3 | |- Fun F |
||
setrec2fun.4 | |- ( ph -> A. a ( a C_ C -> ( F ` a ) C_ C ) ) |
||
Assertion | setrec2fun | |- ( ph -> B C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrec2fun.1 | |- F/_ a F |
|
2 | setrec2fun.2 | |- B = setrecs ( F ) |
|
3 | setrec2fun.3 | |- Fun F |
|
4 | setrec2fun.4 | |- ( ph -> A. a ( a C_ C -> ( F ` a ) C_ C ) ) |
|
5 | df-setrecs | |- setrecs ( F ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
|
6 | 2 5 | eqtri | |- B = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
7 | eqid | |- { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } = { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
|
8 | vex | |- x e. _V |
|
9 | 8 | a1i | |- ( ph -> x e. _V ) |
10 | 7 9 | setrec1lem1 | |- ( ph -> ( x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } <-> A. z ( A. w ( w C_ x -> ( w C_ z -> ( F ` w ) C_ z ) ) -> x C_ z ) ) ) |
11 | id | |- ( w C_ ( C i^i U. ( F " ~P x ) ) -> w C_ ( C i^i U. ( F " ~P x ) ) ) |
|
12 | inss1 | |- ( C i^i U. ( F " ~P x ) ) C_ C |
|
13 | 11 12 | sstrdi | |- ( w C_ ( C i^i U. ( F " ~P x ) ) -> w C_ C ) |
14 | nfv | |- F/ a w C_ C |
|
15 | nfcv | |- F/_ a w |
|
16 | 1 15 | nffv | |- F/_ a ( F ` w ) |
17 | nfcv | |- F/_ a C |
|
18 | 16 17 | nfss | |- F/ a ( F ` w ) C_ C |
19 | 14 18 | nfim | |- F/ a ( w C_ C -> ( F ` w ) C_ C ) |
20 | sseq1 | |- ( a = w -> ( a C_ C <-> w C_ C ) ) |
|
21 | fveq2 | |- ( a = w -> ( F ` a ) = ( F ` w ) ) |
|
22 | 21 | sseq1d | |- ( a = w -> ( ( F ` a ) C_ C <-> ( F ` w ) C_ C ) ) |
23 | 20 22 | imbi12d | |- ( a = w -> ( ( a C_ C -> ( F ` a ) C_ C ) <-> ( w C_ C -> ( F ` w ) C_ C ) ) ) |
24 | 23 | biimpd | |- ( a = w -> ( ( a C_ C -> ( F ` a ) C_ C ) -> ( w C_ C -> ( F ` w ) C_ C ) ) ) |
25 | 19 24 | spimfv | |- ( A. a ( a C_ C -> ( F ` a ) C_ C ) -> ( w C_ C -> ( F ` w ) C_ C ) ) |
26 | 4 25 | syl | |- ( ph -> ( w C_ C -> ( F ` w ) C_ C ) ) |
27 | 13 26 | syl5 | |- ( ph -> ( w C_ ( C i^i U. ( F " ~P x ) ) -> ( F ` w ) C_ C ) ) |
28 | 27 | imp | |- ( ( ph /\ w C_ ( C i^i U. ( F " ~P x ) ) ) -> ( F ` w ) C_ C ) |
29 | 28 | 3adant2 | |- ( ( ph /\ w C_ x /\ w C_ ( C i^i U. ( F " ~P x ) ) ) -> ( F ` w ) C_ C ) |
30 | velpw | |- ( w e. ~P x <-> w C_ x ) |
|
31 | eliman0 | |- ( ( w e. ~P x /\ -. ( F ` w ) = (/) ) -> ( F ` w ) e. ( F " ~P x ) ) |
|
32 | 31 | ex | |- ( w e. ~P x -> ( -. ( F ` w ) = (/) -> ( F ` w ) e. ( F " ~P x ) ) ) |
33 | 30 32 | sylbir | |- ( w C_ x -> ( -. ( F ` w ) = (/) -> ( F ` w ) e. ( F " ~P x ) ) ) |
34 | elssuni | |- ( ( F ` w ) e. ( F " ~P x ) -> ( F ` w ) C_ U. ( F " ~P x ) ) |
|
35 | 33 34 | syl6 | |- ( w C_ x -> ( -. ( F ` w ) = (/) -> ( F ` w ) C_ U. ( F " ~P x ) ) ) |
36 | id | |- ( ( F ` w ) = (/) -> ( F ` w ) = (/) ) |
|
37 | 0ss | |- (/) C_ U. ( F " ~P x ) |
|
38 | 36 37 | eqsstrdi | |- ( ( F ` w ) = (/) -> ( F ` w ) C_ U. ( F " ~P x ) ) |
39 | 35 38 | pm2.61d2 | |- ( w C_ x -> ( F ` w ) C_ U. ( F " ~P x ) ) |
40 | 39 | 3ad2ant2 | |- ( ( ph /\ w C_ x /\ w C_ ( C i^i U. ( F " ~P x ) ) ) -> ( F ` w ) C_ U. ( F " ~P x ) ) |
41 | 29 40 | ssind | |- ( ( ph /\ w C_ x /\ w C_ ( C i^i U. ( F " ~P x ) ) ) -> ( F ` w ) C_ ( C i^i U. ( F " ~P x ) ) ) |
42 | 41 | 3exp | |- ( ph -> ( w C_ x -> ( w C_ ( C i^i U. ( F " ~P x ) ) -> ( F ` w ) C_ ( C i^i U. ( F " ~P x ) ) ) ) ) |
43 | 42 | alrimiv | |- ( ph -> A. w ( w C_ x -> ( w C_ ( C i^i U. ( F " ~P x ) ) -> ( F ` w ) C_ ( C i^i U. ( F " ~P x ) ) ) ) ) |
44 | 8 | pwex | |- ~P x e. _V |
45 | 44 | funimaex | |- ( Fun F -> ( F " ~P x ) e. _V ) |
46 | 3 45 | ax-mp | |- ( F " ~P x ) e. _V |
47 | 46 | uniex | |- U. ( F " ~P x ) e. _V |
48 | 47 | inex2 | |- ( C i^i U. ( F " ~P x ) ) e. _V |
49 | sseq2 | |- ( z = ( C i^i U. ( F " ~P x ) ) -> ( w C_ z <-> w C_ ( C i^i U. ( F " ~P x ) ) ) ) |
|
50 | sseq2 | |- ( z = ( C i^i U. ( F " ~P x ) ) -> ( ( F ` w ) C_ z <-> ( F ` w ) C_ ( C i^i U. ( F " ~P x ) ) ) ) |
|
51 | 49 50 | imbi12d | |- ( z = ( C i^i U. ( F " ~P x ) ) -> ( ( w C_ z -> ( F ` w ) C_ z ) <-> ( w C_ ( C i^i U. ( F " ~P x ) ) -> ( F ` w ) C_ ( C i^i U. ( F " ~P x ) ) ) ) ) |
52 | 51 | imbi2d | |- ( z = ( C i^i U. ( F " ~P x ) ) -> ( ( w C_ x -> ( w C_ z -> ( F ` w ) C_ z ) ) <-> ( w C_ x -> ( w C_ ( C i^i U. ( F " ~P x ) ) -> ( F ` w ) C_ ( C i^i U. ( F " ~P x ) ) ) ) ) ) |
53 | 52 | albidv | |- ( z = ( C i^i U. ( F " ~P x ) ) -> ( A. w ( w C_ x -> ( w C_ z -> ( F ` w ) C_ z ) ) <-> A. w ( w C_ x -> ( w C_ ( C i^i U. ( F " ~P x ) ) -> ( F ` w ) C_ ( C i^i U. ( F " ~P x ) ) ) ) ) ) |
54 | sseq2 | |- ( z = ( C i^i U. ( F " ~P x ) ) -> ( x C_ z <-> x C_ ( C i^i U. ( F " ~P x ) ) ) ) |
|
55 | 53 54 | imbi12d | |- ( z = ( C i^i U. ( F " ~P x ) ) -> ( ( A. w ( w C_ x -> ( w C_ z -> ( F ` w ) C_ z ) ) -> x C_ z ) <-> ( A. w ( w C_ x -> ( w C_ ( C i^i U. ( F " ~P x ) ) -> ( F ` w ) C_ ( C i^i U. ( F " ~P x ) ) ) ) -> x C_ ( C i^i U. ( F " ~P x ) ) ) ) ) |
56 | 48 55 | spcv | |- ( A. z ( A. w ( w C_ x -> ( w C_ z -> ( F ` w ) C_ z ) ) -> x C_ z ) -> ( A. w ( w C_ x -> ( w C_ ( C i^i U. ( F " ~P x ) ) -> ( F ` w ) C_ ( C i^i U. ( F " ~P x ) ) ) ) -> x C_ ( C i^i U. ( F " ~P x ) ) ) ) |
57 | 43 56 | mpan9 | |- ( ( ph /\ A. z ( A. w ( w C_ x -> ( w C_ z -> ( F ` w ) C_ z ) ) -> x C_ z ) ) -> x C_ ( C i^i U. ( F " ~P x ) ) ) |
58 | 57 12 | sstrdi | |- ( ( ph /\ A. z ( A. w ( w C_ x -> ( w C_ z -> ( F ` w ) C_ z ) ) -> x C_ z ) ) -> x C_ C ) |
59 | 58 | ex | |- ( ph -> ( A. z ( A. w ( w C_ x -> ( w C_ z -> ( F ` w ) C_ z ) ) -> x C_ z ) -> x C_ C ) ) |
60 | 10 59 | sylbid | |- ( ph -> ( x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } -> x C_ C ) ) |
61 | 60 | ralrimiv | |- ( ph -> A. x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } x C_ C ) |
62 | unissb | |- ( U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } C_ C <-> A. x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } x C_ C ) |
|
63 | 61 62 | sylibr | |- ( ph -> U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } C_ C ) |
64 | 6 63 | eqsstrid | |- ( ph -> B C_ C ) |