Description: This is the first of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs ( F ) is closed under F . This effectively sets the actual value of setrecs ( F ) as a lower bound for setrecs ( F ) , as it implies that any set generated by successive applications of F is a member of B . This theorem "gets off the ground" because we can start by letting A = (/) , and the hypotheses of the theorem will hold trivially.
Variable B represents an abbreviation of setrecs ( F ) or another name of setrecs ( F ) (for an example of the latter, see theorem setrecon).
Proof summary: Assume that A C_ B , meaning that all elements of A are in some set recursively generated by F . Then by setrec1lem3 , A is a subset of some set recursively generated by F . (It turns out that A itself is recursively generated by F , but we don't need this fact. See the comment to setrec1lem3 .) Therefore, by setrec1lem4 , ( FA ) is a subset of some set recursively generated by F . Thus, by ssuni , it is a subset of the union of all sets recursively generated by F .
See df-setrecs for a detailed description of how the setrecs definition works.
(Contributed by Emmett Weisz, 9-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | setrec1.b | |- B = setrecs ( F ) |
|
setrec1.v | |- ( ph -> A e. _V ) |
||
setrec1.a | |- ( ph -> A C_ B ) |
||
Assertion | setrec1 | |- ( ph -> ( F ` A ) C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrec1.b | |- B = setrecs ( F ) |
|
2 | setrec1.v | |- ( ph -> A e. _V ) |
|
3 | setrec1.a | |- ( ph -> A C_ B ) |
|
4 | eqid | |- { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } = { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
|
5 | 3 | sseld | |- ( ph -> ( a e. A -> a e. B ) ) |
6 | 5 | imp | |- ( ( ph /\ a e. A ) -> a e. B ) |
7 | df-setrecs | |- setrecs ( F ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
|
8 | 1 7 | eqtri | |- B = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
9 | 6 8 | eleqtrdi | |- ( ( ph /\ a e. A ) -> a e. U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) |
10 | eluni | |- ( a e. U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } <-> E. x ( a e. x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) |
|
11 | 9 10 | sylib | |- ( ( ph /\ a e. A ) -> E. x ( a e. x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) |
12 | 11 | ralrimiva | |- ( ph -> A. a e. A E. x ( a e. x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) |
13 | 4 2 12 | setrec1lem3 | |- ( ph -> E. x ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) |
14 | nfv | |- F/ z ph |
|
15 | nfv | |- F/ z A C_ x |
|
16 | nfaba1 | |- F/_ z { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
|
17 | 16 | nfel2 | |- F/ z x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
18 | 15 17 | nfan | |- F/ z ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) |
19 | 14 18 | nfan | |- F/ z ( ph /\ ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) |
20 | 2 | adantr | |- ( ( ph /\ ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) -> A e. _V ) |
21 | simprl | |- ( ( ph /\ ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) -> A C_ x ) |
|
22 | simprr | |- ( ( ph /\ ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) -> x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) |
|
23 | 19 4 20 21 22 | setrec1lem4 | |- ( ( ph /\ ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) -> ( x u. ( F ` A ) ) e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) |
24 | ssun2 | |- ( F ` A ) C_ ( x u. ( F ` A ) ) |
|
25 | 23 24 | jctil | |- ( ( ph /\ ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) -> ( ( F ` A ) C_ ( x u. ( F ` A ) ) /\ ( x u. ( F ` A ) ) e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) |
26 | ssuni | |- ( ( ( F ` A ) C_ ( x u. ( F ` A ) ) /\ ( x u. ( F ` A ) ) e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) -> ( F ` A ) C_ U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) |
|
27 | 25 26 | syl | |- ( ( ph /\ ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) ) -> ( F ` A ) C_ U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) |
28 | 13 27 | exlimddv | |- ( ph -> ( F ` A ) C_ U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } ) |
29 | 28 8 | sseqtrrdi | |- ( ph -> ( F ` A ) C_ B ) |