Metamath Proof Explorer


Theorem setrec1

Description: This is the first of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs ( F ) is closed under F . This effectively sets the actual value of setrecs ( F ) as a lower bound for setrecs ( F ) , as it implies that any set generated by successive applications of F is a member of B . This theorem "gets off the ground" because we can start by letting A = (/) , and the hypotheses of the theorem will hold trivially.

Variable B represents an abbreviation of setrecs ( F ) or another name of setrecs ( F ) (for an example of the latter, see theorem setrecon).

Proof summary: Assume that A C_ B , meaning that all elements of A are in some set recursively generated by F . Then by setrec1lem3 , A is a subset of some set recursively generated by F . (It turns out that A itself is recursively generated by F , but we don't need this fact. See the comment to setrec1lem3 .) Therefore, by setrec1lem4 , ( FA ) is a subset of some set recursively generated by F . Thus, by ssuni , it is a subset of the union of all sets recursively generated by F .

See df-setrecs for a detailed description of how the setrecs definition works.

(Contributed by Emmett Weisz, 9-Oct-2020)

Ref Expression
Hypotheses setrec1.b B = setrecs F
setrec1.v φ A V
setrec1.a φ A B
Assertion setrec1 φ F A B

Proof

Step Hyp Ref Expression
1 setrec1.b B = setrecs F
2 setrec1.v φ A V
3 setrec1.a φ A B
4 eqid y | z w w y w z F w z y z = y | z w w y w z F w z y z
5 3 sseld φ a A a B
6 5 imp φ a A a B
7 df-setrecs setrecs F = y | z w w y w z F w z y z
8 1 7 eqtri B = y | z w w y w z F w z y z
9 6 8 eleqtrdi φ a A a y | z w w y w z F w z y z
10 eluni a y | z w w y w z F w z y z x a x x y | z w w y w z F w z y z
11 9 10 sylib φ a A x a x x y | z w w y w z F w z y z
12 11 ralrimiva φ a A x a x x y | z w w y w z F w z y z
13 4 2 12 setrec1lem3 φ x A x x y | z w w y w z F w z y z
14 nfv z φ
15 nfv z A x
16 nfaba1 _ z y | z w w y w z F w z y z
17 16 nfel2 z x y | z w w y w z F w z y z
18 15 17 nfan z A x x y | z w w y w z F w z y z
19 14 18 nfan z φ A x x y | z w w y w z F w z y z
20 2 adantr φ A x x y | z w w y w z F w z y z A V
21 simprl φ A x x y | z w w y w z F w z y z A x
22 simprr φ A x x y | z w w y w z F w z y z x y | z w w y w z F w z y z
23 19 4 20 21 22 setrec1lem4 φ A x x y | z w w y w z F w z y z x F A y | z w w y w z F w z y z
24 ssun2 F A x F A
25 23 24 jctil φ A x x y | z w w y w z F w z y z F A x F A x F A y | z w w y w z F w z y z
26 ssuni F A x F A x F A y | z w w y w z F w z y z F A y | z w w y w z F w z y z
27 25 26 syl φ A x x y | z w w y w z F w z y z F A y | z w w y w z F w z y z
28 13 27 exlimddv φ F A y | z w w y w z F w z y z
29 28 8 sseqtrrdi φ F A B