Metamath Proof Explorer


Theorem setrec1lem4

Description: Lemma for setrec1 . If X is recursively generated by F , then so is X u. ( FA ) .

In the proof of setrec1 , the following is substituted for this theorem's ph : ( ph /\ ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( Fw ) C_ z ) ) -> y C_ z ) } ) ) Therefore, we cannot declare z to be a distinct variable from ph , since we need it to appear as a bound variable in ph . This theorem can be proven without the hypothesis F/ z ph , but the proof would be harder to read because theorems in deduction form would be interrupted by theorems like eximi , making the antecedent of each line something more complicated than ph . The proof of setrec1lem2 could similarly be made easier to read by adding the hypothesis F/ z ph , but I had already finished the proof and decided to leave it as is. (Contributed by Emmett Weisz, 26-Nov-2020) (New usage is discouraged.)

Ref Expression
Hypotheses setrec1lem4.1 z φ
setrec1lem4.2 Y = y | z w w y w z F w z y z
setrec1lem4.3 φ A V
setrec1lem4.4 φ A X
setrec1lem4.5 φ X Y
Assertion setrec1lem4 φ X F A Y

Proof

Step Hyp Ref Expression
1 setrec1lem4.1 z φ
2 setrec1lem4.2 Y = y | z w w y w z F w z y z
3 setrec1lem4.3 φ A V
4 setrec1lem4.4 φ A X
5 setrec1lem4.5 φ X Y
6 id w X w X
7 ssun1 X X F A
8 6 7 sstrdi w X w X F A
9 8 imim1i w X F A w z F w z w X w z F w z
10 9 alimi w w X F A w z F w z w w X w z F w z
11 2 5 setrec1lem1 φ X Y z w w X w z F w z X z
12 5 11 mpbid φ z w w X w z F w z X z
13 sp z w w X w z F w z X z w w X w z F w z X z
14 12 13 syl φ w w X w z F w z X z
15 sstr2 A X X z A z
16 4 15 syl φ X z A z
17 14 16 syld φ w w X w z F w z A z
18 sseq1 w = A w X A X
19 sseq1 w = A w z A z
20 fveq2 w = A F w = F A
21 20 sseq1d w = A F w z F A z
22 19 21 imbi12d w = A w z F w z A z F A z
23 18 22 imbi12d w = A w X w z F w z A X A z F A z
24 3 23 spcdvw φ w w X w z F w z A X A z F A z
25 4 24 mpid φ w w X w z F w z A z F A z
26 17 25 mpdd φ w w X w z F w z F A z
27 14 26 jcad φ w w X w z F w z X z F A z
28 10 27 syl5 φ w w X F A w z F w z X z F A z
29 unss X z F A z X F A z
30 28 29 syl6ib φ w w X F A w z F w z X F A z
31 1 30 alrimi φ z w w X F A w z F w z X F A z
32 fvex F A V
33 unexg X Y F A V X F A V
34 5 32 33 sylancl φ X F A V
35 2 34 setrec1lem1 φ X F A Y z w w X F A w z F w z X F A z
36 31 35 mpbird φ X F A Y