Metamath Proof Explorer


Theorem setrec1lem1

Description: Lemma for setrec1 . This is a utility theorem showing the equivalence of the statement X e. Y and its expanded form. The proof uses elabg and equivalence theorems.

Variable Y is the class of sets y that are recursively generated by the function F . In other words, y e. Y iff by starting with the empty set and repeatedly applying F to subsets w of our set, we will eventually generate all the elements of Y . In this theorem, X is any element of Y , and V is any class. (Contributed by Emmett Weisz, 16-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses setrec1lem1.1 Y=y|zwwywzFwzyz
setrec1lem1.2 φXV
Assertion setrec1lem1 φXYzwwXwzFwzXz

Proof

Step Hyp Ref Expression
1 setrec1lem1.1 Y=y|zwwywzFwzyz
2 setrec1lem1.2 φXV
3 sseq2 y=XwywX
4 3 imbi1d y=XwywzFwzwXwzFwz
5 4 albidv y=XwwywzFwzwwXwzFwz
6 sseq1 y=XyzXz
7 5 6 imbi12d y=XwwywzFwzyzwwXwzFwzXz
8 7 albidv y=XzwwywzFwzyzzwwXwzFwzXz
9 8 1 elab2g XVXYzwwXwzFwzXz
10 2 9 syl φXYzwwXwzFwzXz