Metamath Proof Explorer


Theorem setrec1lem1

Description: Lemma for setrec1 . This is a utility theorem showing the equivalence of the statement X e. Y and its expanded form. The proof uses elabg and equivalence theorems.

Variable Y is the class of sets y that are recursively generated by the function F . In other words, y e. Y iff by starting with the empty set and repeatedly applying F to subsets w of our set, we will eventually generate all the elements of Y . In this theorem, X is any element of Y , and V is any class. (Contributed by Emmett Weisz, 16-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses setrec1lem1.1 Y = y | z w w y w z F w z y z
setrec1lem1.2 φ X V
Assertion setrec1lem1 φ X Y z w w X w z F w z X z

Proof

Step Hyp Ref Expression
1 setrec1lem1.1 Y = y | z w w y w z F w z y z
2 setrec1lem1.2 φ X V
3 sseq2 y = X w y w X
4 3 imbi1d y = X w y w z F w z w X w z F w z
5 4 albidv y = X w w y w z F w z w w X w z F w z
6 sseq1 y = X y z X z
7 5 6 imbi12d y = X w w y w z F w z y z w w X w z F w z X z
8 7 albidv y = X z w w y w z F w z y z z w w X w z F w z X z
9 8 1 elab2g X V X Y z w w X w z F w z X z
10 2 9 syl φ X Y z w w X w z F w z X z