Description: Lemma for setrec1 . If X is recursively generated by F , then so is X u. ( FA ) .
In the proof of setrec1 , the following is substituted for this theorem's ph : ( ph /\ ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( Fw ) C_ z ) ) -> y C_ z ) } ) ) Therefore, we cannot declare z to be a distinct variable from ph , since we need it to appear as a bound variable in ph . This theorem can be proven without the hypothesis F/ z ph , but the proof would be harder to read because theorems in deduction form would be interrupted by theorems like eximi , making the antecedent of each line something more complicated than ph . The proof of setrec1lem2 could similarly be made easier to read by adding the hypothesis F/ z ph , but I had already finished the proof and decided to leave it as is. (Contributed by Emmett Weisz, 26-Nov-2020) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | setrec1lem4.1 | |- F/ z ph |
|
setrec1lem4.2 | |- Y = { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
||
setrec1lem4.3 | |- ( ph -> A e. _V ) |
||
setrec1lem4.4 | |- ( ph -> A C_ X ) |
||
setrec1lem4.5 | |- ( ph -> X e. Y ) |
||
Assertion | setrec1lem4 | |- ( ph -> ( X u. ( F ` A ) ) e. Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrec1lem4.1 | |- F/ z ph |
|
2 | setrec1lem4.2 | |- Y = { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
|
3 | setrec1lem4.3 | |- ( ph -> A e. _V ) |
|
4 | setrec1lem4.4 | |- ( ph -> A C_ X ) |
|
5 | setrec1lem4.5 | |- ( ph -> X e. Y ) |
|
6 | id | |- ( w C_ X -> w C_ X ) |
|
7 | ssun1 | |- X C_ ( X u. ( F ` A ) ) |
|
8 | 6 7 | sstrdi | |- ( w C_ X -> w C_ ( X u. ( F ` A ) ) ) |
9 | 8 | imim1i | |- ( ( w C_ ( X u. ( F ` A ) ) -> ( w C_ z -> ( F ` w ) C_ z ) ) -> ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) ) |
10 | 9 | alimi | |- ( A. w ( w C_ ( X u. ( F ` A ) ) -> ( w C_ z -> ( F ` w ) C_ z ) ) -> A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) ) |
11 | 2 5 | setrec1lem1 | |- ( ph -> ( X e. Y <-> A. z ( A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) -> X C_ z ) ) ) |
12 | 5 11 | mpbid | |- ( ph -> A. z ( A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) -> X C_ z ) ) |
13 | sp | |- ( A. z ( A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) -> X C_ z ) -> ( A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) -> X C_ z ) ) |
|
14 | 12 13 | syl | |- ( ph -> ( A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) -> X C_ z ) ) |
15 | sstr2 | |- ( A C_ X -> ( X C_ z -> A C_ z ) ) |
|
16 | 4 15 | syl | |- ( ph -> ( X C_ z -> A C_ z ) ) |
17 | 14 16 | syld | |- ( ph -> ( A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) -> A C_ z ) ) |
18 | sseq1 | |- ( w = A -> ( w C_ X <-> A C_ X ) ) |
|
19 | sseq1 | |- ( w = A -> ( w C_ z <-> A C_ z ) ) |
|
20 | fveq2 | |- ( w = A -> ( F ` w ) = ( F ` A ) ) |
|
21 | 20 | sseq1d | |- ( w = A -> ( ( F ` w ) C_ z <-> ( F ` A ) C_ z ) ) |
22 | 19 21 | imbi12d | |- ( w = A -> ( ( w C_ z -> ( F ` w ) C_ z ) <-> ( A C_ z -> ( F ` A ) C_ z ) ) ) |
23 | 18 22 | imbi12d | |- ( w = A -> ( ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) <-> ( A C_ X -> ( A C_ z -> ( F ` A ) C_ z ) ) ) ) |
24 | 3 23 | spcdvw | |- ( ph -> ( A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) -> ( A C_ X -> ( A C_ z -> ( F ` A ) C_ z ) ) ) ) |
25 | 4 24 | mpid | |- ( ph -> ( A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) -> ( A C_ z -> ( F ` A ) C_ z ) ) ) |
26 | 17 25 | mpdd | |- ( ph -> ( A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) -> ( F ` A ) C_ z ) ) |
27 | 14 26 | jcad | |- ( ph -> ( A. w ( w C_ X -> ( w C_ z -> ( F ` w ) C_ z ) ) -> ( X C_ z /\ ( F ` A ) C_ z ) ) ) |
28 | 10 27 | syl5 | |- ( ph -> ( A. w ( w C_ ( X u. ( F ` A ) ) -> ( w C_ z -> ( F ` w ) C_ z ) ) -> ( X C_ z /\ ( F ` A ) C_ z ) ) ) |
29 | unss | |- ( ( X C_ z /\ ( F ` A ) C_ z ) <-> ( X u. ( F ` A ) ) C_ z ) |
|
30 | 28 29 | syl6ib | |- ( ph -> ( A. w ( w C_ ( X u. ( F ` A ) ) -> ( w C_ z -> ( F ` w ) C_ z ) ) -> ( X u. ( F ` A ) ) C_ z ) ) |
31 | 1 30 | alrimi | |- ( ph -> A. z ( A. w ( w C_ ( X u. ( F ` A ) ) -> ( w C_ z -> ( F ` w ) C_ z ) ) -> ( X u. ( F ` A ) ) C_ z ) ) |
32 | fvex | |- ( F ` A ) e. _V |
|
33 | unexg | |- ( ( X e. Y /\ ( F ` A ) e. _V ) -> ( X u. ( F ` A ) ) e. _V ) |
|
34 | 5 32 33 | sylancl | |- ( ph -> ( X u. ( F ` A ) ) e. _V ) |
35 | 2 34 | setrec1lem1 | |- ( ph -> ( ( X u. ( F ` A ) ) e. Y <-> A. z ( A. w ( w C_ ( X u. ( F ` A ) ) -> ( w C_ z -> ( F ` w ) C_ z ) ) -> ( X u. ( F ` A ) ) C_ z ) ) ) |
36 | 31 35 | mpbird | |- ( ph -> ( X u. ( F ` A ) ) e. Y ) |