Metamath Proof Explorer


Theorem setrec1lem3

Description: Lemma for setrec1 . If each element a of A is covered by a set x recursively generated by F , then there is a single such set covering all of A . The set is constructed explicitly using setrec1lem2 . It turns out that x = A also works, i.e., given the hypotheses it is possible to prove that A e. Y . I don't know if proving this fact directly using setrec1lem1 would be any easier than the current proof using setrec1lem2 , and it would only slightly simplify the proof of setrec1 . Other than the use of bnd2d , this is a purely technical theorem for rearranging notation from that of setrec1lem2 to that of setrec1 . (Contributed by Emmett Weisz, 20-Jan-2021) (New usage is discouraged.)

Ref Expression
Hypotheses setrec1lem3.1 Y = y | z w w y w z F w z y z
setrec1lem3.2 φ A V
setrec1lem3.3 φ a A x a x x Y
Assertion setrec1lem3 φ x A x x Y

Proof

Step Hyp Ref Expression
1 setrec1lem3.1 Y = y | z w w y w z F w z y z
2 setrec1lem3.2 φ A V
3 setrec1lem3.3 φ a A x a x x Y
4 exancom x a x x Y x x Y a x
5 4 ralbii a A x a x x Y a A x x Y a x
6 3 5 sylib φ a A x x Y a x
7 df-rex x Y a x x x Y a x
8 7 ralbii a A x Y a x a A x x Y a x
9 6 8 sylibr φ a A x Y a x
10 2 9 bnd2d φ v v Y a A x v a x
11 exancom x x v a x x a x x v
12 df-rex x v a x x x v a x
13 eluni a v x a x x v
14 11 12 13 3bitr4i x v a x a v
15 14 ralbii a A x v a x a A a v
16 dfss3 A v a A a v
17 15 16 bitr4i a A x v a x A v
18 17 anbi2i v Y a A x v a x v Y A v
19 18 exbii v v Y a A x v a x v v Y A v
20 10 19 sylib φ v v Y A v
21 vex v V
22 21 a1i v Y v V
23 id v Y v Y
24 1 22 23 setrec1lem2 v Y v Y
25 24 anim1i v Y A v v Y A v
26 25 ancomd v Y A v A v v Y
27 21 uniex v V
28 sseq2 x = v A x A v
29 eleq1 x = v x Y v Y
30 28 29 anbi12d x = v A x x Y A v v Y
31 27 30 spcev A v v Y x A x x Y
32 26 31 syl v Y A v x A x x Y
33 32 exlimiv v v Y A v x A x x Y
34 20 33 syl φ x A x x Y