Step |
Hyp |
Ref |
Expression |
1 |
|
setrec1lem3.1 |
⊢ 𝑌 = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) } |
2 |
|
setrec1lem3.2 |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
3 |
|
setrec1lem3.3 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ( 𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌 ) ) |
4 |
|
exancom |
⊢ ( ∃ 𝑥 ( 𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥 ) ) |
5 |
4
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ( 𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌 ) ↔ ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥 ) ) |
6 |
3 5
|
sylib |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥 ) ) |
7 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥 ) ) |
8 |
7
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥 ) ) |
9 |
6 8
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ) |
10 |
2 9
|
bnd2d |
⊢ ( 𝜑 → ∃ 𝑣 ( 𝑣 ⊆ 𝑌 ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ) ) |
11 |
|
exancom |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥 ) ↔ ∃ 𝑥 ( 𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣 ) ) |
12 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥 ) ) |
13 |
|
eluni |
⊢ ( 𝑎 ∈ ∪ 𝑣 ↔ ∃ 𝑥 ( 𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣 ) ) |
14 |
11 12 13
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝑎 ∈ ∪ 𝑣 ) |
15 |
14
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣 ) |
16 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ∪ 𝑣 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣 ) |
17 |
15 16
|
bitr4i |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣 ) |
18 |
17
|
anbi2i |
⊢ ( ( 𝑣 ⊆ 𝑌 ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ) ↔ ( 𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣 ) ) |
19 |
18
|
exbii |
⊢ ( ∃ 𝑣 ( 𝑣 ⊆ 𝑌 ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ) ↔ ∃ 𝑣 ( 𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣 ) ) |
20 |
10 19
|
sylib |
⊢ ( 𝜑 → ∃ 𝑣 ( 𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣 ) ) |
21 |
|
vex |
⊢ 𝑣 ∈ V |
22 |
21
|
a1i |
⊢ ( 𝑣 ⊆ 𝑌 → 𝑣 ∈ V ) |
23 |
|
id |
⊢ ( 𝑣 ⊆ 𝑌 → 𝑣 ⊆ 𝑌 ) |
24 |
1 22 23
|
setrec1lem2 |
⊢ ( 𝑣 ⊆ 𝑌 → ∪ 𝑣 ∈ 𝑌 ) |
25 |
24
|
anim1i |
⊢ ( ( 𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣 ) → ( ∪ 𝑣 ∈ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣 ) ) |
26 |
25
|
ancomd |
⊢ ( ( 𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣 ) → ( 𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌 ) ) |
27 |
21
|
uniex |
⊢ ∪ 𝑣 ∈ V |
28 |
|
sseq2 |
⊢ ( 𝑥 = ∪ 𝑣 → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣 ) ) |
29 |
|
eleq1 |
⊢ ( 𝑥 = ∪ 𝑣 → ( 𝑥 ∈ 𝑌 ↔ ∪ 𝑣 ∈ 𝑌 ) ) |
30 |
28 29
|
anbi12d |
⊢ ( 𝑥 = ∪ 𝑣 → ( ( 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌 ) ↔ ( 𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌 ) ) ) |
31 |
27 30
|
spcev |
⊢ ( ( 𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌 ) → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌 ) ) |
32 |
26 31
|
syl |
⊢ ( ( 𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣 ) → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌 ) ) |
33 |
32
|
exlimiv |
⊢ ( ∃ 𝑣 ( 𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣 ) → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌 ) ) |
34 |
20 33
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌 ) ) |