| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setrec1lem3.1 | ⊢ 𝑌  =  { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) } | 
						
							| 2 |  | setrec1lem3.2 | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 3 |  | setrec1lem3.3 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝐴 ∃ 𝑥 ( 𝑎  ∈  𝑥  ∧  𝑥  ∈  𝑌 ) ) | 
						
							| 4 |  | exancom | ⊢ ( ∃ 𝑥 ( 𝑎  ∈  𝑥  ∧  𝑥  ∈  𝑌 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑌  ∧  𝑎  ∈  𝑥 ) ) | 
						
							| 5 | 4 | ralbii | ⊢ ( ∀ 𝑎  ∈  𝐴 ∃ 𝑥 ( 𝑎  ∈  𝑥  ∧  𝑥  ∈  𝑌 )  ↔  ∀ 𝑎  ∈  𝐴 ∃ 𝑥 ( 𝑥  ∈  𝑌  ∧  𝑎  ∈  𝑥 ) ) | 
						
							| 6 | 3 5 | sylib | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝐴 ∃ 𝑥 ( 𝑥  ∈  𝑌  ∧  𝑎  ∈  𝑥 ) ) | 
						
							| 7 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝑌 𝑎  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑌  ∧  𝑎  ∈  𝑥 ) ) | 
						
							| 8 | 7 | ralbii | ⊢ ( ∀ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝑌 𝑎  ∈  𝑥  ↔  ∀ 𝑎  ∈  𝐴 ∃ 𝑥 ( 𝑥  ∈  𝑌  ∧  𝑎  ∈  𝑥 ) ) | 
						
							| 9 | 6 8 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝑌 𝑎  ∈  𝑥 ) | 
						
							| 10 | 2 9 | bnd2d | ⊢ ( 𝜑  →  ∃ 𝑣 ( 𝑣  ⊆  𝑌  ∧  ∀ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝑣 𝑎  ∈  𝑥 ) ) | 
						
							| 11 |  | exancom | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝑣  ∧  𝑎  ∈  𝑥 )  ↔  ∃ 𝑥 ( 𝑎  ∈  𝑥  ∧  𝑥  ∈  𝑣 ) ) | 
						
							| 12 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝑣 𝑎  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑣  ∧  𝑎  ∈  𝑥 ) ) | 
						
							| 13 |  | eluni | ⊢ ( 𝑎  ∈  ∪  𝑣  ↔  ∃ 𝑥 ( 𝑎  ∈  𝑥  ∧  𝑥  ∈  𝑣 ) ) | 
						
							| 14 | 11 12 13 | 3bitr4i | ⊢ ( ∃ 𝑥  ∈  𝑣 𝑎  ∈  𝑥  ↔  𝑎  ∈  ∪  𝑣 ) | 
						
							| 15 | 14 | ralbii | ⊢ ( ∀ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝑣 𝑎  ∈  𝑥  ↔  ∀ 𝑎  ∈  𝐴 𝑎  ∈  ∪  𝑣 ) | 
						
							| 16 |  | dfss3 | ⊢ ( 𝐴  ⊆  ∪  𝑣  ↔  ∀ 𝑎  ∈  𝐴 𝑎  ∈  ∪  𝑣 ) | 
						
							| 17 | 15 16 | bitr4i | ⊢ ( ∀ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝑣 𝑎  ∈  𝑥  ↔  𝐴  ⊆  ∪  𝑣 ) | 
						
							| 18 | 17 | anbi2i | ⊢ ( ( 𝑣  ⊆  𝑌  ∧  ∀ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝑣 𝑎  ∈  𝑥 )  ↔  ( 𝑣  ⊆  𝑌  ∧  𝐴  ⊆  ∪  𝑣 ) ) | 
						
							| 19 | 18 | exbii | ⊢ ( ∃ 𝑣 ( 𝑣  ⊆  𝑌  ∧  ∀ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝑣 𝑎  ∈  𝑥 )  ↔  ∃ 𝑣 ( 𝑣  ⊆  𝑌  ∧  𝐴  ⊆  ∪  𝑣 ) ) | 
						
							| 20 | 10 19 | sylib | ⊢ ( 𝜑  →  ∃ 𝑣 ( 𝑣  ⊆  𝑌  ∧  𝐴  ⊆  ∪  𝑣 ) ) | 
						
							| 21 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑣  ⊆  𝑌  →  𝑣  ∈  V ) | 
						
							| 23 |  | id | ⊢ ( 𝑣  ⊆  𝑌  →  𝑣  ⊆  𝑌 ) | 
						
							| 24 | 1 22 23 | setrec1lem2 | ⊢ ( 𝑣  ⊆  𝑌  →  ∪  𝑣  ∈  𝑌 ) | 
						
							| 25 | 24 | anim1i | ⊢ ( ( 𝑣  ⊆  𝑌  ∧  𝐴  ⊆  ∪  𝑣 )  →  ( ∪  𝑣  ∈  𝑌  ∧  𝐴  ⊆  ∪  𝑣 ) ) | 
						
							| 26 | 25 | ancomd | ⊢ ( ( 𝑣  ⊆  𝑌  ∧  𝐴  ⊆  ∪  𝑣 )  →  ( 𝐴  ⊆  ∪  𝑣  ∧  ∪  𝑣  ∈  𝑌 ) ) | 
						
							| 27 | 21 | uniex | ⊢ ∪  𝑣  ∈  V | 
						
							| 28 |  | sseq2 | ⊢ ( 𝑥  =  ∪  𝑣  →  ( 𝐴  ⊆  𝑥  ↔  𝐴  ⊆  ∪  𝑣 ) ) | 
						
							| 29 |  | eleq1 | ⊢ ( 𝑥  =  ∪  𝑣  →  ( 𝑥  ∈  𝑌  ↔  ∪  𝑣  ∈  𝑌 ) ) | 
						
							| 30 | 28 29 | anbi12d | ⊢ ( 𝑥  =  ∪  𝑣  →  ( ( 𝐴  ⊆  𝑥  ∧  𝑥  ∈  𝑌 )  ↔  ( 𝐴  ⊆  ∪  𝑣  ∧  ∪  𝑣  ∈  𝑌 ) ) ) | 
						
							| 31 | 27 30 | spcev | ⊢ ( ( 𝐴  ⊆  ∪  𝑣  ∧  ∪  𝑣  ∈  𝑌 )  →  ∃ 𝑥 ( 𝐴  ⊆  𝑥  ∧  𝑥  ∈  𝑌 ) ) | 
						
							| 32 | 26 31 | syl | ⊢ ( ( 𝑣  ⊆  𝑌  ∧  𝐴  ⊆  ∪  𝑣 )  →  ∃ 𝑥 ( 𝐴  ⊆  𝑥  ∧  𝑥  ∈  𝑌 ) ) | 
						
							| 33 | 32 | exlimiv | ⊢ ( ∃ 𝑣 ( 𝑣  ⊆  𝑌  ∧  𝐴  ⊆  ∪  𝑣 )  →  ∃ 𝑥 ( 𝐴  ⊆  𝑥  ∧  𝑥  ∈  𝑌 ) ) | 
						
							| 34 | 20 33 | syl | ⊢ ( 𝜑  →  ∃ 𝑥 ( 𝐴  ⊆  𝑥  ∧  𝑥  ∈  𝑌 ) ) |