Metamath Proof Explorer


Theorem setrec1lem3

Description: Lemma for setrec1 . If each element a of A is covered by a set x recursively generated by F , then there is a single such set covering all of A . The set is constructed explicitly using setrec1lem2 . It turns out that x = A also works, i.e., given the hypotheses it is possible to prove that A e. Y . I don't know if proving this fact directly using setrec1lem1 would be any easier than the current proof using setrec1lem2 , and it would only slightly simplify the proof of setrec1 . Other than the use of bnd2d , this is a purely technical theorem for rearranging notation from that of setrec1lem2 to that of setrec1 . (Contributed by Emmett Weisz, 20-Jan-2021) (New usage is discouraged.)

Ref Expression
Hypotheses setrec1lem3.1 𝑌 = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) }
setrec1lem3.2 ( 𝜑𝐴 ∈ V )
setrec1lem3.3 ( 𝜑 → ∀ 𝑎𝐴𝑥 ( 𝑎𝑥𝑥𝑌 ) )
Assertion setrec1lem3 ( 𝜑 → ∃ 𝑥 ( 𝐴𝑥𝑥𝑌 ) )

Proof

Step Hyp Ref Expression
1 setrec1lem3.1 𝑌 = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) }
2 setrec1lem3.2 ( 𝜑𝐴 ∈ V )
3 setrec1lem3.3 ( 𝜑 → ∀ 𝑎𝐴𝑥 ( 𝑎𝑥𝑥𝑌 ) )
4 exancom ( ∃ 𝑥 ( 𝑎𝑥𝑥𝑌 ) ↔ ∃ 𝑥 ( 𝑥𝑌𝑎𝑥 ) )
5 4 ralbii ( ∀ 𝑎𝐴𝑥 ( 𝑎𝑥𝑥𝑌 ) ↔ ∀ 𝑎𝐴𝑥 ( 𝑥𝑌𝑎𝑥 ) )
6 3 5 sylib ( 𝜑 → ∀ 𝑎𝐴𝑥 ( 𝑥𝑌𝑎𝑥 ) )
7 df-rex ( ∃ 𝑥𝑌 𝑎𝑥 ↔ ∃ 𝑥 ( 𝑥𝑌𝑎𝑥 ) )
8 7 ralbii ( ∀ 𝑎𝐴𝑥𝑌 𝑎𝑥 ↔ ∀ 𝑎𝐴𝑥 ( 𝑥𝑌𝑎𝑥 ) )
9 6 8 sylibr ( 𝜑 → ∀ 𝑎𝐴𝑥𝑌 𝑎𝑥 )
10 2 9 bnd2d ( 𝜑 → ∃ 𝑣 ( 𝑣𝑌 ∧ ∀ 𝑎𝐴𝑥𝑣 𝑎𝑥 ) )
11 exancom ( ∃ 𝑥 ( 𝑥𝑣𝑎𝑥 ) ↔ ∃ 𝑥 ( 𝑎𝑥𝑥𝑣 ) )
12 df-rex ( ∃ 𝑥𝑣 𝑎𝑥 ↔ ∃ 𝑥 ( 𝑥𝑣𝑎𝑥 ) )
13 eluni ( 𝑎 𝑣 ↔ ∃ 𝑥 ( 𝑎𝑥𝑥𝑣 ) )
14 11 12 13 3bitr4i ( ∃ 𝑥𝑣 𝑎𝑥𝑎 𝑣 )
15 14 ralbii ( ∀ 𝑎𝐴𝑥𝑣 𝑎𝑥 ↔ ∀ 𝑎𝐴 𝑎 𝑣 )
16 dfss3 ( 𝐴 𝑣 ↔ ∀ 𝑎𝐴 𝑎 𝑣 )
17 15 16 bitr4i ( ∀ 𝑎𝐴𝑥𝑣 𝑎𝑥𝐴 𝑣 )
18 17 anbi2i ( ( 𝑣𝑌 ∧ ∀ 𝑎𝐴𝑥𝑣 𝑎𝑥 ) ↔ ( 𝑣𝑌𝐴 𝑣 ) )
19 18 exbii ( ∃ 𝑣 ( 𝑣𝑌 ∧ ∀ 𝑎𝐴𝑥𝑣 𝑎𝑥 ) ↔ ∃ 𝑣 ( 𝑣𝑌𝐴 𝑣 ) )
20 10 19 sylib ( 𝜑 → ∃ 𝑣 ( 𝑣𝑌𝐴 𝑣 ) )
21 vex 𝑣 ∈ V
22 21 a1i ( 𝑣𝑌𝑣 ∈ V )
23 id ( 𝑣𝑌𝑣𝑌 )
24 1 22 23 setrec1lem2 ( 𝑣𝑌 𝑣𝑌 )
25 24 anim1i ( ( 𝑣𝑌𝐴 𝑣 ) → ( 𝑣𝑌𝐴 𝑣 ) )
26 25 ancomd ( ( 𝑣𝑌𝐴 𝑣 ) → ( 𝐴 𝑣 𝑣𝑌 ) )
27 21 uniex 𝑣 ∈ V
28 sseq2 ( 𝑥 = 𝑣 → ( 𝐴𝑥𝐴 𝑣 ) )
29 eleq1 ( 𝑥 = 𝑣 → ( 𝑥𝑌 𝑣𝑌 ) )
30 28 29 anbi12d ( 𝑥 = 𝑣 → ( ( 𝐴𝑥𝑥𝑌 ) ↔ ( 𝐴 𝑣 𝑣𝑌 ) ) )
31 27 30 spcev ( ( 𝐴 𝑣 𝑣𝑌 ) → ∃ 𝑥 ( 𝐴𝑥𝑥𝑌 ) )
32 26 31 syl ( ( 𝑣𝑌𝐴 𝑣 ) → ∃ 𝑥 ( 𝐴𝑥𝑥𝑌 ) )
33 32 exlimiv ( ∃ 𝑣 ( 𝑣𝑌𝐴 𝑣 ) → ∃ 𝑥 ( 𝐴𝑥𝑥𝑌 ) )
34 20 33 syl ( 𝜑 → ∃ 𝑥 ( 𝐴𝑥𝑥𝑌 ) )