| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setrec1lem2.1 |
⊢ 𝑌 = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) } |
| 2 |
|
setrec1lem2.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 3 |
|
setrec1lem2.3 |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
| 4 |
|
dfss3 |
⊢ ( 𝑋 ⊆ 𝑌 ↔ ∀ 𝑥 ∈ 𝑋 𝑥 ∈ 𝑌 ) |
| 5 |
3 4
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝑥 ∈ 𝑌 ) |
| 6 |
|
vex |
⊢ 𝑥 ∈ V |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 𝑥 ∈ V ) |
| 8 |
1 7
|
setrec1lem1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) ) |
| 9 |
8
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 𝑥 ∈ 𝑌 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) ) |
| 10 |
5 9
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) |
| 11 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) |
| 12 |
10 11
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) |
| 13 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) |
| 15 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ( 𝑥 ∈ 𝑋 → ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) ) |
| 16 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝑋 → 𝑥 ⊆ ∪ 𝑋 ) |
| 17 |
|
sstr2 |
⊢ ( 𝑤 ⊆ 𝑥 → ( 𝑥 ⊆ ∪ 𝑋 → 𝑤 ⊆ ∪ 𝑋 ) ) |
| 18 |
16 17
|
syl5com |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑤 ⊆ 𝑥 → 𝑤 ⊆ ∪ 𝑋 ) ) |
| 19 |
18
|
imim1d |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) ) ) |
| 20 |
19
|
alimdv |
⊢ ( 𝑥 ∈ 𝑋 → ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) ) ) |
| 21 |
20
|
imim1d |
⊢ ( 𝑥 ∈ 𝑋 → ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) ) |
| 22 |
15 21
|
sylcom |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ( 𝑥 ∈ 𝑋 → ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) ) |
| 23 |
22
|
com23 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ( 𝑥 ∈ 𝑋 → 𝑥 ⊆ 𝑧 ) ) ) |
| 24 |
13 14 23
|
ralrimd |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) ) |
| 25 |
24
|
alimi |
⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) ) |
| 26 |
12 25
|
syl |
⊢ ( 𝜑 → ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) ) |
| 27 |
|
unissb |
⊢ ( ∪ 𝑋 ⊆ 𝑧 ↔ ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) |
| 28 |
27
|
imbi2i |
⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∪ 𝑋 ⊆ 𝑧 ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) ) |
| 29 |
28
|
albii |
⊢ ( ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∪ 𝑋 ⊆ 𝑧 ) ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) ) |
| 30 |
26 29
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∪ 𝑋 ⊆ 𝑧 ) ) |
| 31 |
2
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑋 ∈ V ) |
| 32 |
1 31
|
setrec1lem1 |
⊢ ( 𝜑 → ( ∪ 𝑋 ∈ 𝑌 ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∪ 𝑋 ⊆ 𝑧 ) ) ) |
| 33 |
30 32
|
mpbird |
⊢ ( 𝜑 → ∪ 𝑋 ∈ 𝑌 ) |