Metamath Proof Explorer


Theorem setrec1lem2

Description: Lemma for setrec1 . If a family of sets are all recursively generated by F , so is their union. In this theorem, X is a family of sets which are all elements of Y , and V is any class. Use dfss3 , equivalence and equality theorems, and unissb at the end. Sandwich with applications of setrec1lem1. (Contributed by Emmett Weisz, 24-Jan-2021) (New usage is discouraged.)

Ref Expression
Hypotheses setrec1lem2.1 𝑌 = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) }
setrec1lem2.2 ( 𝜑𝑋𝑉 )
setrec1lem2.3 ( 𝜑𝑋𝑌 )
Assertion setrec1lem2 ( 𝜑 𝑋𝑌 )

Proof

Step Hyp Ref Expression
1 setrec1lem2.1 𝑌 = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) }
2 setrec1lem2.2 ( 𝜑𝑋𝑉 )
3 setrec1lem2.3 ( 𝜑𝑋𝑌 )
4 dfss3 ( 𝑋𝑌 ↔ ∀ 𝑥𝑋 𝑥𝑌 )
5 3 4 sylib ( 𝜑 → ∀ 𝑥𝑋 𝑥𝑌 )
6 vex 𝑥 ∈ V
7 6 a1i ( 𝜑𝑥 ∈ V )
8 1 7 setrec1lem1 ( 𝜑 → ( 𝑥𝑌 ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) ) )
9 8 ralbidv ( 𝜑 → ( ∀ 𝑥𝑋 𝑥𝑌 ↔ ∀ 𝑥𝑋𝑧 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) ) )
10 5 9 mpbid ( 𝜑 → ∀ 𝑥𝑋𝑧 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) )
11 ralcom4 ( ∀ 𝑥𝑋𝑧 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) ↔ ∀ 𝑧𝑥𝑋 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) )
12 10 11 sylib ( 𝜑 → ∀ 𝑧𝑥𝑋 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) )
13 nfra1 𝑥𝑥𝑋 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 )
14 nfv 𝑥𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) )
15 rsp ( ∀ 𝑥𝑋 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) → ( 𝑥𝑋 → ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) ) )
16 elssuni ( 𝑥𝑋𝑥 𝑋 )
17 sstr2 ( 𝑤𝑥 → ( 𝑥 𝑋𝑤 𝑋 ) )
18 16 17 syl5com ( 𝑥𝑋 → ( 𝑤𝑥𝑤 𝑋 ) )
19 18 imim1d ( 𝑥𝑋 → ( ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) ) )
20 19 alimdv ( 𝑥𝑋 → ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) ) )
21 20 imim1d ( 𝑥𝑋 → ( ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) → ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) ) )
22 15 21 sylcom ( ∀ 𝑥𝑋 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) → ( 𝑥𝑋 → ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) ) )
23 22 com23 ( ∀ 𝑥𝑋 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) → ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → ( 𝑥𝑋𝑥𝑧 ) ) )
24 13 14 23 ralrimd ( ∀ 𝑥𝑋 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) → ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥𝑋 𝑥𝑧 ) )
25 24 alimi ( ∀ 𝑧𝑥𝑋 ( ∀ 𝑤 ( 𝑤𝑥 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑥𝑧 ) → ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥𝑋 𝑥𝑧 ) )
26 12 25 syl ( 𝜑 → ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥𝑋 𝑥𝑧 ) )
27 unissb ( 𝑋𝑧 ↔ ∀ 𝑥𝑋 𝑥𝑧 )
28 27 imbi2i ( ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑋𝑧 ) ↔ ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥𝑋 𝑥𝑧 ) )
29 28 albii ( ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑋𝑧 ) ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥𝑋 𝑥𝑧 ) )
30 26 29 sylibr ( 𝜑 → ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑋𝑧 ) )
31 2 uniexd ( 𝜑 𝑋 ∈ V )
32 1 31 setrec1lem1 ( 𝜑 → ( 𝑋𝑌 ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑋 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑋𝑧 ) ) )
33 30 32 mpbird ( 𝜑 𝑋𝑌 )