| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setrec1lem2.1 | ⊢ 𝑌  =  { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) } | 
						
							| 2 |  | setrec1lem2.2 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 3 |  | setrec1lem2.3 | ⊢ ( 𝜑  →  𝑋  ⊆  𝑌 ) | 
						
							| 4 |  | dfss3 | ⊢ ( 𝑋  ⊆  𝑌  ↔  ∀ 𝑥  ∈  𝑋 𝑥  ∈  𝑌 ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 𝑥  ∈  𝑌 ) | 
						
							| 6 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  𝑥  ∈  V ) | 
						
							| 8 | 1 7 | setrec1lem1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑌  ↔  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 ) ) ) | 
						
							| 9 | 8 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 𝑥  ∈  𝑌  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 ) ) ) | 
						
							| 10 | 5 9 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 ) ) | 
						
							| 11 |  | ralcom4 | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 )  ↔  ∀ 𝑧 ∀ 𝑥  ∈  𝑋 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 ) ) | 
						
							| 12 | 10 11 | sylib | ⊢ ( 𝜑  →  ∀ 𝑧 ∀ 𝑥  ∈  𝑋 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 ) ) | 
						
							| 13 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝑋 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑥 ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) ) | 
						
							| 15 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 )  →  ( 𝑥  ∈  𝑋  →  ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 ) ) ) | 
						
							| 16 |  | elssuni | ⊢ ( 𝑥  ∈  𝑋  →  𝑥  ⊆  ∪  𝑋 ) | 
						
							| 17 |  | sstr2 | ⊢ ( 𝑤  ⊆  𝑥  →  ( 𝑥  ⊆  ∪  𝑋  →  𝑤  ⊆  ∪  𝑋 ) ) | 
						
							| 18 | 16 17 | syl5com | ⊢ ( 𝑥  ∈  𝑋  →  ( 𝑤  ⊆  𝑥  →  𝑤  ⊆  ∪  𝑋 ) ) | 
						
							| 19 | 18 | imim1d | ⊢ ( 𝑥  ∈  𝑋  →  ( ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) ) ) ) | 
						
							| 20 | 19 | alimdv | ⊢ ( 𝑥  ∈  𝑋  →  ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) ) ) ) | 
						
							| 21 | 20 | imim1d | ⊢ ( 𝑥  ∈  𝑋  →  ( ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 )  →  ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 ) ) ) | 
						
							| 22 | 15 21 | sylcom | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 )  →  ( 𝑥  ∈  𝑋  →  ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 ) ) ) | 
						
							| 23 | 22 | com23 | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 )  →  ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ( 𝑥  ∈  𝑋  →  𝑥  ⊆  𝑧 ) ) ) | 
						
							| 24 | 13 14 23 | ralrimd | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 )  →  ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ∀ 𝑥  ∈  𝑋 𝑥  ⊆  𝑧 ) ) | 
						
							| 25 | 24 | alimi | ⊢ ( ∀ 𝑧 ∀ 𝑥  ∈  𝑋 ( ∀ 𝑤 ( 𝑤  ⊆  𝑥  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑥  ⊆  𝑧 )  →  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ∀ 𝑥  ∈  𝑋 𝑥  ⊆  𝑧 ) ) | 
						
							| 26 | 12 25 | syl | ⊢ ( 𝜑  →  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ∀ 𝑥  ∈  𝑋 𝑥  ⊆  𝑧 ) ) | 
						
							| 27 |  | unissb | ⊢ ( ∪  𝑋  ⊆  𝑧  ↔  ∀ 𝑥  ∈  𝑋 𝑥  ⊆  𝑧 ) | 
						
							| 28 | 27 | imbi2i | ⊢ ( ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ∪  𝑋  ⊆  𝑧 )  ↔  ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ∀ 𝑥  ∈  𝑋 𝑥  ⊆  𝑧 ) ) | 
						
							| 29 | 28 | albii | ⊢ ( ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ∪  𝑋  ⊆  𝑧 )  ↔  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ∀ 𝑥  ∈  𝑋 𝑥  ⊆  𝑧 ) ) | 
						
							| 30 | 26 29 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ∪  𝑋  ⊆  𝑧 ) ) | 
						
							| 31 | 2 | uniexd | ⊢ ( 𝜑  →  ∪  𝑋  ∈  V ) | 
						
							| 32 | 1 31 | setrec1lem1 | ⊢ ( 𝜑  →  ( ∪  𝑋  ∈  𝑌  ↔  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  ∪  𝑋  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  ∪  𝑋  ⊆  𝑧 ) ) ) | 
						
							| 33 | 30 32 | mpbird | ⊢ ( 𝜑  →  ∪  𝑋  ∈  𝑌 ) |