Step |
Hyp |
Ref |
Expression |
1 |
|
setrec1lem2.1 |
⊢ 𝑌 = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) } |
2 |
|
setrec1lem2.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
3 |
|
setrec1lem2.3 |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
4 |
|
dfss3 |
⊢ ( 𝑋 ⊆ 𝑌 ↔ ∀ 𝑥 ∈ 𝑋 𝑥 ∈ 𝑌 ) |
5 |
3 4
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝑥 ∈ 𝑌 ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
6
|
a1i |
⊢ ( 𝜑 → 𝑥 ∈ V ) |
8 |
1 7
|
setrec1lem1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 𝑥 ∈ 𝑌 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) ) |
10 |
5 9
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) |
11 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) |
12 |
10 11
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) |
13 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) |
15 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ( 𝑥 ∈ 𝑋 → ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) ) |
16 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝑋 → 𝑥 ⊆ ∪ 𝑋 ) |
17 |
|
sstr2 |
⊢ ( 𝑤 ⊆ 𝑥 → ( 𝑥 ⊆ ∪ 𝑋 → 𝑤 ⊆ ∪ 𝑋 ) ) |
18 |
16 17
|
syl5com |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑤 ⊆ 𝑥 → 𝑤 ⊆ ∪ 𝑋 ) ) |
19 |
18
|
imim1d |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) ) ) |
20 |
19
|
alimdv |
⊢ ( 𝑥 ∈ 𝑋 → ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) ) ) |
21 |
20
|
imim1d |
⊢ ( 𝑥 ∈ 𝑋 → ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) ) |
22 |
15 21
|
sylcom |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ( 𝑥 ∈ 𝑋 → ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) ) ) |
23 |
22
|
com23 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ( 𝑥 ∈ 𝑋 → 𝑥 ⊆ 𝑧 ) ) ) |
24 |
13 14 23
|
ralrimd |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) ) |
25 |
24
|
alimi |
⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑥 ⊆ 𝑧 ) → ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) ) |
26 |
12 25
|
syl |
⊢ ( 𝜑 → ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) ) |
27 |
|
unissb |
⊢ ( ∪ 𝑋 ⊆ 𝑧 ↔ ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) |
28 |
27
|
imbi2i |
⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∪ 𝑋 ⊆ 𝑧 ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) ) |
29 |
28
|
albii |
⊢ ( ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∪ 𝑋 ⊆ 𝑧 ) ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∀ 𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧 ) ) |
30 |
26 29
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∪ 𝑋 ⊆ 𝑧 ) ) |
31 |
2
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑋 ∈ V ) |
32 |
1 31
|
setrec1lem1 |
⊢ ( 𝜑 → ( ∪ 𝑋 ∈ 𝑌 ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ ∪ 𝑋 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → ∪ 𝑋 ⊆ 𝑧 ) ) ) |
33 |
30 32
|
mpbird |
⊢ ( 𝜑 → ∪ 𝑋 ∈ 𝑌 ) |