Metamath Proof Explorer


Theorem ssuni

Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof shortened by JJ, 26-Jul-2021)

Ref Expression
Assertion ssuni ABBCAC

Proof

Step Hyp Ref Expression
1 elunii xBBCxC
2 1 expcom BCxBxC
3 2 imim2d BCxAxBxAxC
4 3 alimdv BCxxAxBxxAxC
5 dfss2 ABxxAxB
6 dfss2 ACxxAxC
7 4 5 6 3imtr4g BCABAC
8 7 impcom ABBCAC