Metamath Proof Explorer


Theorem setrec2fun

Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs ( F ) is a subclass of all classes C that are closed under F . Taken together, Theorems setrec1 and setrec2v say that setrecs ( F ) is the minimal class closed under F .

We express this by saying that if F respects the C_ relation and C is closed under F , then B C_ C . By substituting strategically constructed classes for C , we can easily prove many useful properties. Although this theorem cannot show equality between B and C , if we intend to prove equality between B and some particular class (such as On ), we first apply this theorem, then the relevant induction theorem (such as tfi ) to the other class. (Contributed by Emmett Weisz, 15-Feb-2021) (New usage is discouraged.)

Ref Expression
Hypotheses setrec2fun.1 _ a F
setrec2fun.2 B = setrecs F
setrec2fun.3 Fun F
setrec2fun.4 φ a a C F a C
Assertion setrec2fun φ B C

Proof

Step Hyp Ref Expression
1 setrec2fun.1 _ a F
2 setrec2fun.2 B = setrecs F
3 setrec2fun.3 Fun F
4 setrec2fun.4 φ a a C F a C
5 df-setrecs setrecs F = y | z w w y w z F w z y z
6 2 5 eqtri B = y | z w w y w z F w z y z
7 eqid y | z w w y w z F w z y z = y | z w w y w z F w z y z
8 vex x V
9 8 a1i φ x V
10 7 9 setrec1lem1 φ x y | z w w y w z F w z y z z w w x w z F w z x z
11 id w C F 𝒫 x w C F 𝒫 x
12 inss1 C F 𝒫 x C
13 11 12 sstrdi w C F 𝒫 x w C
14 nfv a w C
15 nfcv _ a w
16 1 15 nffv _ a F w
17 nfcv _ a C
18 16 17 nfss a F w C
19 14 18 nfim a w C F w C
20 sseq1 a = w a C w C
21 fveq2 a = w F a = F w
22 21 sseq1d a = w F a C F w C
23 20 22 imbi12d a = w a C F a C w C F w C
24 23 biimpd a = w a C F a C w C F w C
25 19 24 spimfv a a C F a C w C F w C
26 4 25 syl φ w C F w C
27 13 26 syl5 φ w C F 𝒫 x F w C
28 27 imp φ w C F 𝒫 x F w C
29 28 3adant2 φ w x w C F 𝒫 x F w C
30 velpw w 𝒫 x w x
31 eliman0 w 𝒫 x ¬ F w = F w F 𝒫 x
32 31 ex w 𝒫 x ¬ F w = F w F 𝒫 x
33 30 32 sylbir w x ¬ F w = F w F 𝒫 x
34 elssuni F w F 𝒫 x F w F 𝒫 x
35 33 34 syl6 w x ¬ F w = F w F 𝒫 x
36 id F w = F w =
37 0ss F 𝒫 x
38 36 37 eqsstrdi F w = F w F 𝒫 x
39 35 38 pm2.61d2 w x F w F 𝒫 x
40 39 3ad2ant2 φ w x w C F 𝒫 x F w F 𝒫 x
41 29 40 ssind φ w x w C F 𝒫 x F w C F 𝒫 x
42 41 3exp φ w x w C F 𝒫 x F w C F 𝒫 x
43 42 alrimiv φ w w x w C F 𝒫 x F w C F 𝒫 x
44 8 pwex 𝒫 x V
45 44 funimaex Fun F F 𝒫 x V
46 3 45 ax-mp F 𝒫 x V
47 46 uniex F 𝒫 x V
48 47 inex2 C F 𝒫 x V
49 sseq2 z = C F 𝒫 x w z w C F 𝒫 x
50 sseq2 z = C F 𝒫 x F w z F w C F 𝒫 x
51 49 50 imbi12d z = C F 𝒫 x w z F w z w C F 𝒫 x F w C F 𝒫 x
52 51 imbi2d z = C F 𝒫 x w x w z F w z w x w C F 𝒫 x F w C F 𝒫 x
53 52 albidv z = C F 𝒫 x w w x w z F w z w w x w C F 𝒫 x F w C F 𝒫 x
54 sseq2 z = C F 𝒫 x x z x C F 𝒫 x
55 53 54 imbi12d z = C F 𝒫 x w w x w z F w z x z w w x w C F 𝒫 x F w C F 𝒫 x x C F 𝒫 x
56 48 55 spcv z w w x w z F w z x z w w x w C F 𝒫 x F w C F 𝒫 x x C F 𝒫 x
57 43 56 mpan9 φ z w w x w z F w z x z x C F 𝒫 x
58 57 12 sstrdi φ z w w x w z F w z x z x C
59 58 ex φ z w w x w z F w z x z x C
60 10 59 sylbid φ x y | z w w y w z F w z y z x C
61 60 ralrimiv φ x y | z w w y w z F w z y z x C
62 unissb y | z w w y w z F w z y z C x y | z w w y w z F w z y z x C
63 61 62 sylibr φ y | z w w y w z F w z y z C
64 6 63 eqsstrid φ B C