| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvres |
|- ( a e. { x | E! y x F y } -> ( ( F |` { x | E! y x F y } ) ` a ) = ( F ` a ) ) |
| 2 |
|
nfvres |
|- ( -. a e. { x | E! y x F y } -> ( ( F |` { x | E! y x F y } ) ` a ) = (/) ) |
| 3 |
|
vex |
|- a e. _V |
| 4 |
|
breq1 |
|- ( x = a -> ( x F y <-> a F y ) ) |
| 5 |
4
|
eubidv |
|- ( x = a -> ( E! y x F y <-> E! y a F y ) ) |
| 6 |
3 5
|
elab |
|- ( a e. { x | E! y x F y } <-> E! y a F y ) |
| 7 |
|
tz6.12-2 |
|- ( -. E! y a F y -> ( F ` a ) = (/) ) |
| 8 |
6 7
|
sylnbi |
|- ( -. a e. { x | E! y x F y } -> ( F ` a ) = (/) ) |
| 9 |
2 8
|
eqtr4d |
|- ( -. a e. { x | E! y x F y } -> ( ( F |` { x | E! y x F y } ) ` a ) = ( F ` a ) ) |
| 10 |
1 9
|
pm2.61i |
|- ( ( F |` { x | E! y x F y } ) ` a ) = ( F ` a ) |