| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvres |  |-  ( a e. { x | E! y x F y } -> ( ( F |` { x | E! y x F y } ) ` a ) = ( F ` a ) ) | 
						
							| 2 |  | nfvres |  |-  ( -. a e. { x | E! y x F y } -> ( ( F |` { x | E! y x F y } ) ` a ) = (/) ) | 
						
							| 3 |  | vex |  |-  a e. _V | 
						
							| 4 |  | breq1 |  |-  ( x = a -> ( x F y <-> a F y ) ) | 
						
							| 5 | 4 | eubidv |  |-  ( x = a -> ( E! y x F y <-> E! y a F y ) ) | 
						
							| 6 | 3 5 | elab |  |-  ( a e. { x | E! y x F y } <-> E! y a F y ) | 
						
							| 7 |  | tz6.12-2 |  |-  ( -. E! y a F y -> ( F ` a ) = (/) ) | 
						
							| 8 | 6 7 | sylnbi |  |-  ( -. a e. { x | E! y x F y } -> ( F ` a ) = (/) ) | 
						
							| 9 | 2 8 | eqtr4d |  |-  ( -. a e. { x | E! y x F y } -> ( ( F |` { x | E! y x F y } ) ` a ) = ( F ` a ) ) | 
						
							| 10 | 1 9 | pm2.61i |  |-  ( ( F |` { x | E! y x F y } ) ` a ) = ( F ` a ) |