Metamath Proof Explorer


Theorem setrec2lem1

Description: Lemma for setrec2 . The functional part of F has the same values as F . (Contributed by Emmett Weisz, 4-Mar-2021) (New usage is discouraged.)

Ref Expression
Assertion setrec2lem1 ( ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 ) = ( 𝐹𝑎 )

Proof

Step Hyp Ref Expression
1 fvres ( 𝑎 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } → ( ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 ) = ( 𝐹𝑎 ) )
2 nfvres ( ¬ 𝑎 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } → ( ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 ) = ∅ )
3 vex 𝑎 ∈ V
4 breq1 ( 𝑥 = 𝑎 → ( 𝑥 𝐹 𝑦𝑎 𝐹 𝑦 ) )
5 4 eubidv ( 𝑥 = 𝑎 → ( ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∃! 𝑦 𝑎 𝐹 𝑦 ) )
6 3 5 elab ( 𝑎 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ↔ ∃! 𝑦 𝑎 𝐹 𝑦 )
7 tz6.12-2 ( ¬ ∃! 𝑦 𝑎 𝐹 𝑦 → ( 𝐹𝑎 ) = ∅ )
8 6 7 sylnbi ( ¬ 𝑎 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } → ( 𝐹𝑎 ) = ∅ )
9 2 8 eqtr4d ( ¬ 𝑎 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } → ( ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 ) = ( 𝐹𝑎 ) )
10 1 9 pm2.61i ( ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 ) = ( 𝐹𝑎 )