| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvres | ⊢ ( 𝑎  ∈  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 }  →  ( ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 2 |  | nfvres | ⊢ ( ¬  𝑎  ∈  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 }  →  ( ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 )  =  ∅ ) | 
						
							| 3 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 4 |  | breq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥 𝐹 𝑦  ↔  𝑎 𝐹 𝑦 ) ) | 
						
							| 5 | 4 | eubidv | ⊢ ( 𝑥  =  𝑎  →  ( ∃! 𝑦 𝑥 𝐹 𝑦  ↔  ∃! 𝑦 𝑎 𝐹 𝑦 ) ) | 
						
							| 6 | 3 5 | elab | ⊢ ( 𝑎  ∈  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 }  ↔  ∃! 𝑦 𝑎 𝐹 𝑦 ) | 
						
							| 7 |  | tz6.12-2 | ⊢ ( ¬  ∃! 𝑦 𝑎 𝐹 𝑦  →  ( 𝐹 ‘ 𝑎 )  =  ∅ ) | 
						
							| 8 | 6 7 | sylnbi | ⊢ ( ¬  𝑎  ∈  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 }  →  ( 𝐹 ‘ 𝑎 )  =  ∅ ) | 
						
							| 9 | 2 8 | eqtr4d | ⊢ ( ¬  𝑎  ∈  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 }  →  ( ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 10 | 1 9 | pm2.61i | ⊢ ( ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑎 ) |