Step |
Hyp |
Ref |
Expression |
1 |
|
fvres |
⊢ ( 𝑎 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } → ( ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
2 |
|
nfvres |
⊢ ( ¬ 𝑎 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } → ( ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 ) = ∅ ) |
3 |
|
vex |
⊢ 𝑎 ∈ V |
4 |
|
breq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝐹 𝑦 ↔ 𝑎 𝐹 𝑦 ) ) |
5 |
4
|
eubidv |
⊢ ( 𝑥 = 𝑎 → ( ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∃! 𝑦 𝑎 𝐹 𝑦 ) ) |
6 |
3 5
|
elab |
⊢ ( 𝑎 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ↔ ∃! 𝑦 𝑎 𝐹 𝑦 ) |
7 |
|
tz6.12-2 |
⊢ ( ¬ ∃! 𝑦 𝑎 𝐹 𝑦 → ( 𝐹 ‘ 𝑎 ) = ∅ ) |
8 |
6 7
|
sylnbi |
⊢ ( ¬ 𝑎 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } → ( 𝐹 ‘ 𝑎 ) = ∅ ) |
9 |
2 8
|
eqtr4d |
⊢ ( ¬ 𝑎 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } → ( ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
10 |
1 9
|
pm2.61i |
⊢ ( ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) |