Metamath Proof Explorer


Theorem setrec2

Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs ( F ) is a subclass of all classes C that are closed under F . Taken together, Theorems setrec1 and setrec2v uniquely determine setrecs ( F ) to be the minimal class closed under F .

We express this by saying that if F respects the C_ relation and C is closed under F , then B C_ C . By substituting strategically constructed classes for C , we can easily prove many useful properties. Although this theorem cannot show equality between B and C , if we intend to prove equality between B and some particular class (such as On ), we first apply this theorem, then the relevant induction theorem (such as tfi ) to the other class.

(Contributed by Emmett Weisz, 2-Sep-2021)

Ref Expression
Hypotheses setrec2.1 _aF
setrec2.2 B=setrecsF
setrec2.3 φaaCFaC
Assertion setrec2 φBC

Proof

Step Hyp Ref Expression
1 setrec2.1 _aF
2 setrec2.2 B=setrecsF
3 setrec2.3 φaaCFaC
4 nfcv _ax
5 nfcv _au
6 4 1 5 nfbr axFu
7 6 nfeuw a∃!uxFu
8 7 nfab _ax|∃!uxFu
9 1 8 nfres _aFx|∃!uxFu
10 setrec2lem1 Fx|∃!uxFuw=Fw
11 10 sseq1i Fx|∃!uxFuwzFwz
12 11 imbi2i wzFx|∃!uxFuwzwzFwz
13 12 imbi2i wywzFx|∃!uxFuwzwywzFwz
14 13 albii wwywzFx|∃!uxFuwzwwywzFwz
15 14 imbi1i wwywzFx|∃!uxFuwzyzwwywzFwzyz
16 15 albii zwwywzFx|∃!uxFuwzyzzwwywzFwzyz
17 16 abbii y|zwwywzFx|∃!uxFuwzyz=y|zwwywzFwzyz
18 17 unieqi y|zwwywzFx|∃!uxFuwzyz=y|zwwywzFwzyz
19 df-setrecs setrecsFx|∃!uxFu=y|zwwywzFx|∃!uxFuwzyz
20 df-setrecs setrecsF=y|zwwywzFwzyz
21 18 19 20 3eqtr4ri setrecsF=setrecsFx|∃!uxFu
22 2 21 eqtri B=setrecsFx|∃!uxFu
23 setrec2lem2 FunFx|∃!uxFu
24 setrec2lem1 Fx|∃!uxFua=Fa
25 24 sseq1i Fx|∃!uxFuaCFaC
26 25 imbi2i aCFx|∃!uxFuaCaCFaC
27 26 albii aaCFx|∃!uxFuaCaaCFaC
28 3 27 sylibr φaaCFx|∃!uxFuaC
29 9 22 23 28 setrec2fun φBC