Metamath Proof Explorer


Theorem setis

Description: Version of setrec2 expressed as an induction schema. This theorem is a generalization of tfis3 . (Contributed by Emmett Weisz, 27-Feb-2022)

Ref Expression
Hypotheses setis.1
|- B = setrecs ( F )
setis.2
|- ( b = A -> ( ps <-> ch ) )
setis.3
|- ( ph -> A. a ( A. b e. a ps -> A. b e. ( F ` a ) ps ) )
Assertion setis
|- ( ph -> ( A e. B -> ch ) )

Proof

Step Hyp Ref Expression
1 setis.1
 |-  B = setrecs ( F )
2 setis.2
 |-  ( b = A -> ( ps <-> ch ) )
3 setis.3
 |-  ( ph -> A. a ( A. b e. a ps -> A. b e. ( F ` a ) ps ) )
4 ssabral
 |-  ( a C_ { b | ps } <-> A. b e. a ps )
5 ssabral
 |-  ( ( F ` a ) C_ { b | ps } <-> A. b e. ( F ` a ) ps )
6 4 5 imbi12i
 |-  ( ( a C_ { b | ps } -> ( F ` a ) C_ { b | ps } ) <-> ( A. b e. a ps -> A. b e. ( F ` a ) ps ) )
7 6 albii
 |-  ( A. a ( a C_ { b | ps } -> ( F ` a ) C_ { b | ps } ) <-> A. a ( A. b e. a ps -> A. b e. ( F ` a ) ps ) )
8 3 7 sylibr
 |-  ( ph -> A. a ( a C_ { b | ps } -> ( F ` a ) C_ { b | ps } ) )
9 1 8 setrec2v
 |-  ( ph -> B C_ { b | ps } )
10 9 sseld
 |-  ( ph -> ( A e. B -> A e. { b | ps } ) )
11 2 elabg
 |-  ( A e. B -> ( A e. { b | ps } <-> ch ) )
12 10 11 mpbidi
 |-  ( ph -> ( A e. B -> ch ) )