Metamath Proof Explorer


Theorem setis

Description: Version of setrec2 expressed as an induction schema. This theorem is a generalization of tfis3 . (Contributed by Emmett Weisz, 27-Feb-2022)

Ref Expression
Hypotheses setis.1 B = setrecs F
setis.2 b = A ψ χ
setis.3 φ a b a ψ b F a ψ
Assertion setis φ A B χ

Proof

Step Hyp Ref Expression
1 setis.1 B = setrecs F
2 setis.2 b = A ψ χ
3 setis.3 φ a b a ψ b F a ψ
4 ssabral a b | ψ b a ψ
5 ssabral F a b | ψ b F a ψ
6 4 5 imbi12i a b | ψ F a b | ψ b a ψ b F a ψ
7 6 albii a a b | ψ F a b | ψ a b a ψ b F a ψ
8 3 7 sylibr φ a a b | ψ F a b | ψ
9 1 8 setrec2v φ B b | ψ
10 9 sseld φ A B A b | ψ
11 2 elabg A B A b | ψ χ
12 10 11 mpbidi φ A B χ