| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setis.1 | ⊢ 𝐵  =  setrecs ( 𝐹 ) | 
						
							| 2 |  | setis.2 | ⊢ ( 𝑏  =  𝐴  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | setis.3 | ⊢ ( 𝜑  →  ∀ 𝑎 ( ∀ 𝑏  ∈  𝑎 𝜓  →  ∀ 𝑏  ∈  ( 𝐹 ‘ 𝑎 ) 𝜓 ) ) | 
						
							| 4 |  | ssabral | ⊢ ( 𝑎  ⊆  { 𝑏  ∣  𝜓 }  ↔  ∀ 𝑏  ∈  𝑎 𝜓 ) | 
						
							| 5 |  | ssabral | ⊢ ( ( 𝐹 ‘ 𝑎 )  ⊆  { 𝑏  ∣  𝜓 }  ↔  ∀ 𝑏  ∈  ( 𝐹 ‘ 𝑎 ) 𝜓 ) | 
						
							| 6 | 4 5 | imbi12i | ⊢ ( ( 𝑎  ⊆  { 𝑏  ∣  𝜓 }  →  ( 𝐹 ‘ 𝑎 )  ⊆  { 𝑏  ∣  𝜓 } )  ↔  ( ∀ 𝑏  ∈  𝑎 𝜓  →  ∀ 𝑏  ∈  ( 𝐹 ‘ 𝑎 ) 𝜓 ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑎 ( 𝑎  ⊆  { 𝑏  ∣  𝜓 }  →  ( 𝐹 ‘ 𝑎 )  ⊆  { 𝑏  ∣  𝜓 } )  ↔  ∀ 𝑎 ( ∀ 𝑏  ∈  𝑎 𝜓  →  ∀ 𝑏  ∈  ( 𝐹 ‘ 𝑎 ) 𝜓 ) ) | 
						
							| 8 | 3 7 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑎 ( 𝑎  ⊆  { 𝑏  ∣  𝜓 }  →  ( 𝐹 ‘ 𝑎 )  ⊆  { 𝑏  ∣  𝜓 } ) ) | 
						
							| 9 | 1 8 | setrec2v | ⊢ ( 𝜑  →  𝐵  ⊆  { 𝑏  ∣  𝜓 } ) | 
						
							| 10 | 9 | sseld | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝐵  →  𝐴  ∈  { 𝑏  ∣  𝜓 } ) ) | 
						
							| 11 | 2 | elabg | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  { 𝑏  ∣  𝜓 }  ↔  𝜒 ) ) | 
						
							| 12 | 10 11 | mpbidi | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝐵  →  𝜒 ) ) |