Metamath Proof Explorer


Theorem setis

Description: Version of setrec2 expressed as an induction schema. This theorem is a generalization of tfis3 . (Contributed by Emmett Weisz, 27-Feb-2022)

Ref Expression
Hypotheses setis.1 𝐵 = setrecs ( 𝐹 )
setis.2 ( 𝑏 = 𝐴 → ( 𝜓𝜒 ) )
setis.3 ( 𝜑 → ∀ 𝑎 ( ∀ 𝑏𝑎 𝜓 → ∀ 𝑏 ∈ ( 𝐹𝑎 ) 𝜓 ) )
Assertion setis ( 𝜑 → ( 𝐴𝐵𝜒 ) )

Proof

Step Hyp Ref Expression
1 setis.1 𝐵 = setrecs ( 𝐹 )
2 setis.2 ( 𝑏 = 𝐴 → ( 𝜓𝜒 ) )
3 setis.3 ( 𝜑 → ∀ 𝑎 ( ∀ 𝑏𝑎 𝜓 → ∀ 𝑏 ∈ ( 𝐹𝑎 ) 𝜓 ) )
4 ssabral ( 𝑎 ⊆ { 𝑏𝜓 } ↔ ∀ 𝑏𝑎 𝜓 )
5 ssabral ( ( 𝐹𝑎 ) ⊆ { 𝑏𝜓 } ↔ ∀ 𝑏 ∈ ( 𝐹𝑎 ) 𝜓 )
6 4 5 imbi12i ( ( 𝑎 ⊆ { 𝑏𝜓 } → ( 𝐹𝑎 ) ⊆ { 𝑏𝜓 } ) ↔ ( ∀ 𝑏𝑎 𝜓 → ∀ 𝑏 ∈ ( 𝐹𝑎 ) 𝜓 ) )
7 6 albii ( ∀ 𝑎 ( 𝑎 ⊆ { 𝑏𝜓 } → ( 𝐹𝑎 ) ⊆ { 𝑏𝜓 } ) ↔ ∀ 𝑎 ( ∀ 𝑏𝑎 𝜓 → ∀ 𝑏 ∈ ( 𝐹𝑎 ) 𝜓 ) )
8 3 7 sylibr ( 𝜑 → ∀ 𝑎 ( 𝑎 ⊆ { 𝑏𝜓 } → ( 𝐹𝑎 ) ⊆ { 𝑏𝜓 } ) )
9 1 8 setrec2v ( 𝜑𝐵 ⊆ { 𝑏𝜓 } )
10 9 sseld ( 𝜑 → ( 𝐴𝐵𝐴 ∈ { 𝑏𝜓 } ) )
11 2 elabg ( 𝐴𝐵 → ( 𝐴 ∈ { 𝑏𝜓 } ↔ 𝜒 ) )
12 10 11 mpbidi ( 𝜑 → ( 𝐴𝐵𝜒 ) )