Step |
Hyp |
Ref |
Expression |
1 |
|
setis.1 |
⊢ 𝐵 = setrecs ( 𝐹 ) |
2 |
|
setis.2 |
⊢ ( 𝑏 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
setis.3 |
⊢ ( 𝜑 → ∀ 𝑎 ( ∀ 𝑏 ∈ 𝑎 𝜓 → ∀ 𝑏 ∈ ( 𝐹 ‘ 𝑎 ) 𝜓 ) ) |
4 |
|
ssabral |
⊢ ( 𝑎 ⊆ { 𝑏 ∣ 𝜓 } ↔ ∀ 𝑏 ∈ 𝑎 𝜓 ) |
5 |
|
ssabral |
⊢ ( ( 𝐹 ‘ 𝑎 ) ⊆ { 𝑏 ∣ 𝜓 } ↔ ∀ 𝑏 ∈ ( 𝐹 ‘ 𝑎 ) 𝜓 ) |
6 |
4 5
|
imbi12i |
⊢ ( ( 𝑎 ⊆ { 𝑏 ∣ 𝜓 } → ( 𝐹 ‘ 𝑎 ) ⊆ { 𝑏 ∣ 𝜓 } ) ↔ ( ∀ 𝑏 ∈ 𝑎 𝜓 → ∀ 𝑏 ∈ ( 𝐹 ‘ 𝑎 ) 𝜓 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑎 ( 𝑎 ⊆ { 𝑏 ∣ 𝜓 } → ( 𝐹 ‘ 𝑎 ) ⊆ { 𝑏 ∣ 𝜓 } ) ↔ ∀ 𝑎 ( ∀ 𝑏 ∈ 𝑎 𝜓 → ∀ 𝑏 ∈ ( 𝐹 ‘ 𝑎 ) 𝜓 ) ) |
8 |
3 7
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑎 ( 𝑎 ⊆ { 𝑏 ∣ 𝜓 } → ( 𝐹 ‘ 𝑎 ) ⊆ { 𝑏 ∣ 𝜓 } ) ) |
9 |
1 8
|
setrec2v |
⊢ ( 𝜑 → 𝐵 ⊆ { 𝑏 ∣ 𝜓 } ) |
10 |
9
|
sseld |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ { 𝑏 ∣ 𝜓 } ) ) |
11 |
2
|
elabg |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑏 ∣ 𝜓 } ↔ 𝜒 ) ) |
12 |
10 11
|
mpbidi |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝐵 → 𝜒 ) ) |