Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sge0fodjrn.k | |- F/ k ph | |
| sge0fodjrn.n | |- F/ n ph | ||
| sge0fodjrn.bd | |- ( k = G -> B = D ) | ||
| sge0fodjrn.c | |- ( ph -> C e. V ) | ||
| sge0fodjrn.f | |- ( ph -> F : C -onto-> A ) | ||
| sge0fodjrn.dj | |- ( ph -> Disj_ n e. C ( F ` n ) ) | ||
| sge0fodjrn.fng | |- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) | ||
| sge0fodjrn.b | |- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) | ||
| sge0fodjrn.b0 | |- ( ( ph /\ k = (/) ) -> B = 0 ) | ||
| Assertion | sge0fodjrn | |- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( n e. C |-> D ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sge0fodjrn.k | |- F/ k ph | |
| 2 | sge0fodjrn.n | |- F/ n ph | |
| 3 | sge0fodjrn.bd | |- ( k = G -> B = D ) | |
| 4 | sge0fodjrn.c | |- ( ph -> C e. V ) | |
| 5 | sge0fodjrn.f | |- ( ph -> F : C -onto-> A ) | |
| 6 | sge0fodjrn.dj | |- ( ph -> Disj_ n e. C ( F ` n ) ) | |
| 7 | sge0fodjrn.fng | |- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) | |
| 8 | sge0fodjrn.b | |- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) | |
| 9 | sge0fodjrn.b0 | |- ( ( ph /\ k = (/) ) -> B = 0 ) | |
| 10 | eqid |  |-  ( `' F " { (/) } ) = ( `' F " { (/) } ) | |
| 11 | 1 2 3 4 5 6 7 8 9 10 | sge0fodjrnlem | |- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( n e. C |-> D ) ) ) |