Metamath Proof Explorer


Theorem sge0fodjrn

Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0fodjrn.k
|- F/ k ph
sge0fodjrn.n
|- F/ n ph
sge0fodjrn.bd
|- ( k = G -> B = D )
sge0fodjrn.c
|- ( ph -> C e. V )
sge0fodjrn.f
|- ( ph -> F : C -onto-> A )
sge0fodjrn.dj
|- ( ph -> Disj_ n e. C ( F ` n ) )
sge0fodjrn.fng
|- ( ( ph /\ n e. C ) -> ( F ` n ) = G )
sge0fodjrn.b
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
sge0fodjrn.b0
|- ( ( ph /\ k = (/) ) -> B = 0 )
Assertion sge0fodjrn
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( n e. C |-> D ) ) )

Proof

Step Hyp Ref Expression
1 sge0fodjrn.k
 |-  F/ k ph
2 sge0fodjrn.n
 |-  F/ n ph
3 sge0fodjrn.bd
 |-  ( k = G -> B = D )
4 sge0fodjrn.c
 |-  ( ph -> C e. V )
5 sge0fodjrn.f
 |-  ( ph -> F : C -onto-> A )
6 sge0fodjrn.dj
 |-  ( ph -> Disj_ n e. C ( F ` n ) )
7 sge0fodjrn.fng
 |-  ( ( ph /\ n e. C ) -> ( F ` n ) = G )
8 sge0fodjrn.b
 |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
9 sge0fodjrn.b0
 |-  ( ( ph /\ k = (/) ) -> B = 0 )
10 eqid
 |-  ( `' F " { (/) } ) = ( `' F " { (/) } )
11 1 2 3 4 5 6 7 8 9 10 sge0fodjrnlem
 |-  ( ph -> ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( n e. C |-> D ) ) )