Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0fodjrn.k | |- F/ k ph |
|
sge0fodjrn.n | |- F/ n ph |
||
sge0fodjrn.bd | |- ( k = G -> B = D ) |
||
sge0fodjrn.c | |- ( ph -> C e. V ) |
||
sge0fodjrn.f | |- ( ph -> F : C -onto-> A ) |
||
sge0fodjrn.dj | |- ( ph -> Disj_ n e. C ( F ` n ) ) |
||
sge0fodjrn.fng | |- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
||
sge0fodjrn.b | |- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
||
sge0fodjrn.b0 | |- ( ( ph /\ k = (/) ) -> B = 0 ) |
||
Assertion | sge0fodjrn | |- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( n e. C |-> D ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0fodjrn.k | |- F/ k ph |
|
2 | sge0fodjrn.n | |- F/ n ph |
|
3 | sge0fodjrn.bd | |- ( k = G -> B = D ) |
|
4 | sge0fodjrn.c | |- ( ph -> C e. V ) |
|
5 | sge0fodjrn.f | |- ( ph -> F : C -onto-> A ) |
|
6 | sge0fodjrn.dj | |- ( ph -> Disj_ n e. C ( F ` n ) ) |
|
7 | sge0fodjrn.fng | |- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
|
8 | sge0fodjrn.b | |- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
|
9 | sge0fodjrn.b0 | |- ( ( ph /\ k = (/) ) -> B = 0 ) |
|
10 | eqid | |- ( `' F " { (/) } ) = ( `' F " { (/) } ) |
|
11 | 1 2 3 4 5 6 7 8 9 10 | sge0fodjrnlem | |- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( n e. C |-> D ) ) ) |