Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Sum of nonnegative extended reals
sge0fodjrn
Metamath Proof Explorer
Description: Re-index a nonnegative extended sum using an onto function with disjoint
range, when the empty set is assigned 0 in the sum (this is true,
for example, both for measures and outer measures). (Contributed by Glauco Siliprandi , 17-Aug-2020)
Ref
Expression
Hypotheses
sge0fodjrn.k
⊢ Ⅎ k φ
sge0fodjrn.n
⊢ Ⅎ n φ
sge0fodjrn.bd
⊢ k = G → B = D
sge0fodjrn.c
⊢ φ → C ∈ V
sge0fodjrn.f
⊢ φ → F : C ⟶ onto A
sge0fodjrn.dj
⊢ φ → Disj n ∈ C F ⁡ n
sge0fodjrn.fng
⊢ φ ∧ n ∈ C → F ⁡ n = G
sge0fodjrn.b
⊢ φ ∧ k ∈ A → B ∈ 0 +∞
sge0fodjrn.b0
⊢ φ ∧ k = ∅ → B = 0
Assertion
sge0fodjrn
⊢ φ → sum^ ⁡ k ∈ A ⟼ B = sum^ ⁡ n ∈ C ⟼ D
Proof
Step
Hyp
Ref
Expression
1
sge0fodjrn.k
⊢ Ⅎ k φ
2
sge0fodjrn.n
⊢ Ⅎ n φ
3
sge0fodjrn.bd
⊢ k = G → B = D
4
sge0fodjrn.c
⊢ φ → C ∈ V
5
sge0fodjrn.f
⊢ φ → F : C ⟶ onto A
6
sge0fodjrn.dj
⊢ φ → Disj n ∈ C F ⁡ n
7
sge0fodjrn.fng
⊢ φ ∧ n ∈ C → F ⁡ n = G
8
sge0fodjrn.b
⊢ φ ∧ k ∈ A → B ∈ 0 +∞
9
sge0fodjrn.b0
⊢ φ ∧ k = ∅ → B = 0
10
eqid
⊢ F -1 ∅ = F -1 ∅
11
1 2 3 4 5 6 7 8 9 10
sge0fodjrnlem
⊢ φ → sum^ ⁡ k ∈ A ⟼ B = sum^ ⁡ n ∈ C ⟼ D