Metamath Proof Explorer


Theorem sge0fodjrn

Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0fodjrn.k k φ
sge0fodjrn.n n φ
sge0fodjrn.bd k = G B = D
sge0fodjrn.c φ C V
sge0fodjrn.f φ F : C onto A
sge0fodjrn.dj φ Disj n C F n
sge0fodjrn.fng φ n C F n = G
sge0fodjrn.b φ k A B 0 +∞
sge0fodjrn.b0 φ k = B = 0
Assertion sge0fodjrn φ sum^ k A B = sum^ n C D

Proof

Step Hyp Ref Expression
1 sge0fodjrn.k k φ
2 sge0fodjrn.n n φ
3 sge0fodjrn.bd k = G B = D
4 sge0fodjrn.c φ C V
5 sge0fodjrn.f φ F : C onto A
6 sge0fodjrn.dj φ Disj n C F n
7 sge0fodjrn.fng φ n C F n = G
8 sge0fodjrn.b φ k A B 0 +∞
9 sge0fodjrn.b0 φ k = B = 0
10 eqid F -1 = F -1
11 1 2 3 4 5 6 7 8 9 10 sge0fodjrnlem φ sum^ k A B = sum^ n C D